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Abstract 

Both in practice and in the academic literature, models for setting margin requirements 

in futures markets use daily closing price changes. However, financial markets have recently 

shown high intraday volatility, which could bring more risk than expected. Such a phenomenon 

is well documented in the literature on high-frequency data and has prompted some exchanges 

to set intraday margin requirements and ask intraday margin calls. This article proposes to set 

margin requirements by taking into account the intraday dynamics of market prices. Daily 

margin levels are obtained in two ways: first, by using daily price changes defined with different 

time-intervals (say from 3 pm to 3 pm on the following trading day instead of traditional closing 

times); second, by using 5-minute and 1-hour price changes and scaling the results to one day. 

An application to the FTSE 100 futures contract traded on LIFFE demonstrates the usefulness of 

this new approach. 
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1. Introduction 

The existence of margin requirements decreases the likelihood of customers' default, 

brokers' bankruptcy and systemic instability of futures markets. Margin requirements act as 

collateral that investors are required to pay to reduce default risk. 4 Margin committees face a 

dilemma however in determining the magnitude of the margin requirement imposed on futures 

traders. On the one hand, setting a high margin level reduces default risk. On the other hand, if 

the margin level is set too high, then the futures contracts will be less attractive for investors due 

to higher costs and decreased liquidity, and finally less profitable for the exchange itself. This 

quandary has forced margin committees to impose investor deposits that represent a practical 

compromise between meeting the objectives of adequate prudence and liquidity of the futures 

contracts. 

For products traded on the London International Financial Futures and Options 

Exchange (LIFFE), margin requirements are set by the London Clearing House (LCH)5 using 

the London Systematic Portfolio Analysis of Risk (SPAN) system, a specifically developed 

variation of the SPAN system originally introduced by the Chicago Mercantile Exchange 

(CME). The London SPAN system is a non-parametric risk-based model that provides output of 

margin requirements that are sufficient to cover potential default losses in all but the most 

extreme circumstances. The inputs to the system are estimated margin requirements relying on 

price movements that are not expected to be exceeded over a day or couple of days. These 

estimated values are based on diverse criteria incorporating a focus on a contract’s price history, 

its close-to-close and intraday price movements, its liquidity, its seasonality and forthcoming 

price sensitive events. Market volatility is specially a key factor to set margin levels. Most 

important however is the extent of the contract’s price movements with a policy for a minimum 

margin requirement that covers three standard deviations of historic price volatility based on the 

higher of one-day or two-day price movements over the previous 60-day trading period. This is 

                                                

4 Futures exchanges also use capital requirements and price limits to protect against investor default. 
5 The LCH risk committee made up of qualified risk management members is responsible for all 
decisions relating to margin requirements for LIFFE contracts. Margin committees generally involve 
experienced market participants who have widespread knowledge in dealing with margin setting and 
implementation, through their exposure to various market conditions and their ability to respond to 
changing environments (Brenner (1981)). The LCH risk committee is independent from the commercial 
function of the Clearinghouse. 
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akin to using the Gaussian distribution where multiples of standard deviation cover certain price 

movements at various probability levels.6  

The academic literature has applied a number of alternative statistical approaches in 

order to compute the margin requirement that adequately protects against default at various 

probability levels and/or determine the probabilities associated with different margin 

requirements. Figlewski (1984) and Gay et al (1986) classically assume that futures price 

movements follow a Gaussian distribution. One well-documented problem with using a 

particular distribution such as the Gaussian distribution is model risk. In particular, it is well 

known that the Gaussian distribution underestimates in most cases the weight of the tails of the 

distribution. Longin (1996) uses extreme value theory to quantify this statement and shows that 

the empirical distribution of financial asset price changes is fat-tailed while the Gaussian 

distribution is thin-tailed. Edwards and Neftci (1988) and Warshawsky (1989) use the historical 

distribution of past price changes which overcomes the underestimation issue of assuming 

normality. However, the historical distribution is unable to deal with very low probability levels 

due to the lack of sufficient price changes available for analysis.  

A distinct approach focuses on an economic model for broker cost minimization in 

which the margin is endogenously determined (Brennan (1986)). Another approach developed 

by Craine (1992) and Day and Lewis (1999) is based on the fact that the distributions of the 

payoffs to futures traders and the potential losses to the futures clearinghouse can be described 

in terms of the payoffs to barrier options. Initial margins requirements can then be related to the 

present value of such options. 

Kofman (1993), Longin (1995 and 1999), Booth et al (1997) and Cotter (2001) apply 

extreme value theory, a statistical theory that specifically models the tails of the distribution of 

futures price changes. This latter framework specifically focuses on the main measurement issue 

relating to margin setting, namely, trying to adequately model quantiles and probabilities of the 

distribution tails for future price changes. As the problem of setting margin requirements is 

related to the tails of the distribution of futures price changes (the left tail for a long position and 

the right tail for a short position) it is beneficial to examine specifically lower and upper tail 

percentiles. Extreme value theory does exactly this by focusing only on tail values thereby 

minimising model risk that is associated with procedures that model the full distribution of 

                                                

6 For instance, under the hypothesis of normality for price movements, two standard deviations would 
cover 97.72% of price movements, and three standard deviations 99.87%. 
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futures price changes. Extreme value theory removes the need for making assumptions of the 

exact distributional form of the random process under analysis as the limiting distribution of 

extreme price changes is the same for many classes of distributions and processes used to 

describe futures price changes (see Longin and Solnik (2001)). Another advantage of the 

extreme value approach is the parametric form that allows one to extrapolate to out-of-sample 

time frames unlike the use of the historical distribution of price changes that is constrained to in-

sample predictions. By having an objective likelihood function we avoid the problem of 

subjectively defined stress tests that try to examine the impact of financial crises. Furthermore, 

extreme value theory requires tail estimates that are time invariant due to their fractal nature. 

This allows for precise tail measurement incorporating a simple and efficient scaling law for 

different frequency intervals, for example from intraday to daily estimates. 

One question that we may ask about the nature of risk management is whether the 

clearinghouse should care more about ordinary market conditions or more about extraordinary 

market conditions. In other financial institutions such as banks two distinct approaches are used: 

value at risk models for ordinary market conditions and stress testing for extraordinary market 

conditions (see Longin (2000)). The clearinghouse must also address both sets of market 

conditions in margin setting so as to minimize the likelihood of investor default by examining a 

range of probabilities of price movements associated with common and uncommon events. The 

first approach is conditional reflecting the changing of market conditions over time while the 

second approach is unconditional trying to incorporate extreme events that occurred over a long 

period of time. All studies above are based on unconditional distributions and cannot reflect 

current market conditions. Cotter (2001) considers a conditional process by applying a GARCH 

specification to address issues relating to the dynamic features of futures contracts volatility. 

Previous studies based on statistical models used closing prices to estimate daily margin 

requirements mainly due to data unavailability. However, trading on futures markets takes place 

on an intraday level and a complete understanding of their operations requires analysis of high-

frequency intraday features (see Cotter (2004)). Margin setting using intraday dynamics 

incorporates the full information set regarding price movements over the trading day. In 

contrast, margin setting using closing prices only uses trading information around close of day. 

Intraday dynamics are important. For instance, it is well documented that daily volatility varies 

over time with particular characteristics (Bollerslev et al (1992)). However, more recently, 

intraday volatility has also been examined and distinct patterns are also documented. For 

example, macroeconomic announcements impact volatility sharply but their impacts have a life 
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span of less than two hours, and thereafter have a negligible influence on price movements 

(Bollerslev et al (2000)). Thus an analysis of daily prices alone would not take account of these 

intraday activities. 

Intraday price movements supply the margin setter with a mechanism to adequately 

describe and predict the impact of futures price volatility within the appropriate timeframe. In 

terms of statistical modelling the impact of futures volatility on margin requirement setting 

require a certain minimum number of observations for first accurately identifying the empirical 

feature, next developing a model that adequately describes the feature and finally testing the 

model to predict market occurrence. Notwithstanding this, the clearinghouse must ensure that 

they are modelling the same economic event in their analysis of financial data. For instance, 

futures price changes may exhibit a structural change over time from say the 1980s to the 1990s. 

Thus given the average lifespan of many futures contracts is one year margin setting is based on 

analysis of price movements for this interval size in this paper. However, in model development, 

this interval size may sometimes provide insufficient observations at daily frequency using 

various statistical techniques. Using higher frequency intraday price changes and scaling to 

relatively low frequency daily estimates overcomes this modelling difficulty.  

 In practice clearinghouses are beginning to recognize the importance of intraday 

dynamics. For example, in 2002, the LCH has introduced an additional intraday margin 

requirement that is initiated if price movements on a contract challenge the prevailing margin 

requirement. Specifically, an intraday margin requirement is initiated if a contract price changes 

by 65% of the margin requirement originally set for that contract. In this case, the Clearinghouse 

requires an additional margin payment for falling prices on a long position or for rising prices on 

a short position. The possible impact of intraday price movements is now clearly, and rightly so, 

of concern to risk management overseers for LIFFE contracts. 

The main contribution of this paper is to take into account the intraday dynamics of 

futures market prices by computing margin requirements. All previous academic studies 

considered daily closing prices only, thus missing important information. Closing prices alone 

lose information regarding price movements and their associated transaction activity within the 

trading day. The clearinghouses modelling margin requirements should incorporate the intraday 

price movements in margin setting. Daily margin levels are obtained in two ways: first, by using 

daily price changes defined with different time-intervals (say from 3 pm to 3 pm on the 

following trading instead of traditional closing times); second, by using 5-minute and 1-hour 

price changes and scaling the results to one day following Dacarogna et al (1995). As shown by 
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Merton (1980) for risk measures (as opposed to performance measures), it is beneficial to use 

data with the highest frequency in order to get more precise estimates of the tail parameter. In 

our paper, different statistical distributions are also used to model futures price changes: the 

Gaussian distribution, the extreme value distribution and the historical distribution. An ARCH-

type process is also used to take into account the time-varying property of financial data. An 

application is given for the FTSE 100 futures contract traded on LIFFE. 

The remainder of the paper is organized as follows. The statistical models used for the 

distribution of futures contract price changes and the scaling method are presented in the next 

section. Section 3 provides a description of the FTSE 100 futures contract data used in the 

application and a detailed statistical analysis of the intraday dynamics of the market prices. 

Section 4 presents empirical results for margins by taking into account the intraday dynamics. 

Finally, a summary of the paper and some conclusions are given in Section 5. 

2. Statistical models and scaling method 

This section presents the different statistical models used to compute the margin level for 

a given probability. It also presents the scaling method to obtain daily margin levels from 

intraday price changes. 

2.1 The extreme value distribution 

The theoretical framework applied in this study relies on the findings of extreme value 

theory. According to this statistical theory three types of asymptotic distribution can be 

obtained: Gumbel, Weibul and the one of concern to this study, the Fréchet distribution, which 

is obtained for fat-tailed distributions (see Gnedenko (1943)). Weak convergence is assumed to 

occur for the Fréchet distribution underpinned by the maximum domain of attraction (MDA).  

This allows for approximation to the characteristics of the Fréchet distribution giving rise to a 

semi-parametric estimation procedure. This theoretical framework offers a number of 

advantages to margin setting. First, the main prudence issue in determining margin requirements 

is to protect against default that results from extreme price movements. These price changes are 

extreme values and as such should be modeled with procedures specifically focused on 

capturing these quantile and probability estimates, and this is exactly what extreme value does. 

Second, modeling only the tail of the distribution as opposed to the center of the distribution, 

which is irrelevant for margin setting, minimizes bias in the estimation procedure. Third, tail 
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behavior of the fat-tailed Fréchet distribution exhibits a self-similarity property that allows for 

an easy extension for multi-period margin estimation using a simple scaling rule. 

Examining the framework and begin by assuming that a margin requirement can be 

measured as futures price change, represented by a random variable, R, and that exceeding this 

level is estimated at various probabilities. Furthermore, assume that the random variable is 

independent and identically distributed (iid) and belonging to the true unknown cumulative 

probability density function FR.7 We are interested in the probability that the maximum of the 

first n random variables exceeds a certain price change, r, 8 

(1)  )(1}{ rFrMP n
n −=>  

for n random variables, Mn = max {R1, R2,..., Rn}. 

The probability estimator could also be expressed as a quantile where one is examining 

what margin requirement is sufficient to exceed futures price changes at various probability 

levels.9 

Whilst the exact distribution is unknown, assuming the distribution exhibits the regular 

variation at infinity property, then asymptotically it behaves like a fat-tailed distribution.  

(2)  α−≈− arrF n )(1  

where a represents the scaling parameter and α the shape parameter.10 

This expression is for any given frequency and it is easy to extend the framework to 

lower frequencies as these extremes have an identical tail shape. For instance, taking the single 

period price changes, R, and extending these to a multi-period setting, kR, using the additive 

property of a fat-tailed distribution from Feller’s theorem (Feller (1971)):  

                                                

7 The successful modelling of financial returns using GARCH specifications clearly invalidates the iid 
assumption. De Haan et al (1989) examine less restrictive processes more akin with futures price 
changes only requiring the assumption of stationarity and this is followed in this paper.  
8 Extreme value theory is usually detailed for upper order statistics focusing on upper tail values and the 
remainder of the paper will follow this convention. This study also examines empirically the lower order 
statistics focused on lower tail values.  
9 For the issue at hand the probability of exceeding a predetermined margin level on a short position for n 
price changes is: δ=>= }{ shortnshort rMPP , where rshort represents the margin level on a short position 

and δ is the unknown exceedance probability given by )(1 rF n− . 

10 The shape parameter α is related to the tail index τ often used in the EVT literature by the relation: 
α = 1/τ. 
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(3)  α−≈− karkrF n )(1  

Importantly the shape parameter, α, remains invariant to the aggregation process and 

also has implications for empirical benefits in its actual estimation.11 Dacarogna et al (1995) 

have shown that high-frequency tail estimation has efficiency benefits due to their fractal 

behavior. In contrast, low frequency estimation suffers from negative sample size effects. 

Furthermore for ease of computation, the scaling procedure does not require further estimation, 

but only involves parameters from the high-frequency analysis, shown to provide the most 

detailed information on futures price movements. 

The regular variation at infinity property represents the necessary and sufficient 

condition for convergence to the fat-tailed extreme value distribution. Thus it unifies fat-tailed 

distributions and allows for unbounded moments: 

(4)  
( )
( )

α−

+∞→
=

−
⋅−

r
tF
rtF

R

R

t 1
1

lim  

By l’Hopital’s rule it can be shown that the student-t, and symmetric non-normal sum-

stable distributions, and certain ARCH processes with an unconditional stationary distribution 

and even assuming conditionally normal innovations all exhibit this condition as their tails 

decline by a power function. Subsequently all these distributions exhibit identical behavior far 

out in the tails. In contrast, other distributions such as the normal distribution, and the finite 

mixtures of Gaussian distributions have a tail that declines exponentially which declines faster 

than a power decline and thus are relatively thin-tailed. The shape parameter, α, measures the 

degree of tail thickness and the number of bounded moments (see appendix for details of the 

semi-parametric estimation procedure). A shape parameter greater than 2 implies that the first 

two moments, the mean and variance, exist whereas financial studies have cited value between 2 

and 4 suggesting that not all moments of the price changes are finite (see Longin (1996)). In 

contrast, support for the Gaussian distribution would require a shape parameter equal to infinity, 

as all moments exist. Thus the estimate of the shape parameter distinguishes between different 

distributions and for instance, α represents the degrees of freedom of the Student-t distribution 

and equals the characteristic exponent of the sum-stable distribution for α < 2. 

                                                

11 The α-root scaling law for the extreme value estimates is similar in application to the √ scaling 
procedure of a normal distribution. 
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Given the asymptotic relationship of the random variable to the fat-tailed distribution, 

non-parametric tail estimation takes place giving two related mechanisms for describing the 

margin estimates. The first focuses on the margin requirement and determines the probability of 

various price movements, rp:  

(5)  α/1)/( npmrr tp =  

By using this estimate we can examine different margin requirements that would not be 

violated at various probability levels and implicitly determine if the trade-off between 

optimizing liquidity and prudence is being met. Rearranging gives the probability, p, of 

exceeding any preset margin requirement:  

(6)  nmrrp pt /)/( α=  

Again these probabilities are used to determine if the prudence and commercial concerns 

of the futures exchange is reached. 

2.2 The APARCH process 

To model the time-varying behavior of price changes suggested by the previous analysis, 

we use the Asymmetric Power ARCH (APARCH) developed by Ding et al (1993). This model 

nests many extensions of the GARCH process. As well as encompassing three ARCH 

specifications (ARCH, Non-linear ARCH and Log-ARCH), two specifications of the GARCH 

model (using standard deviation and variance of returns), it also details two asymmetric models 

(both ARCH and GARCH versions). It is given by: 

(7)  � �
= =

−−− +++=
p

i

q

j

d
jtj

d
itiitio

d
t

1 1

)( σβεγεαασ  

for .11,1,0,,0 ≤≤−≤+≥ ijiji γβαβαα  

The APARCH incorporates volatility persistence, β, asymmetries, γ, and flexibility of 

power transformations, d, in the estimation of volatility.  Detailing the model, the process 

presents the volatility measure in the form of a Box-Cox transformation whose flexibility allows 

for different specifications of the residuals process. This transformation provides a linear 

representation of non-linear processes. As well as describing the traditional time dependent 

volatility feature, the model specifically incorporates the leverage effects, γ, by letting the 

autoregressive term of the conditional volatility process be represented as asymmetric absolute 
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residuals. A general class of volatility models incorporating the non-linear versions are defined 

by the power coefficient, d.  

The APARCH(1, 1) is applied to the price series at the end of the sample during 

December 2000. A number of variations of the model are applied and Akaike’s (AIC) and 

Schwarz’s (BIC) selection criteria are used to determine the best fitted process. Fat-tails are 

accounted for by assuming that the conditional distribution is a Student-t distribution. 

3. Data analysis 

3.1 Data 

The empirical analysis is based on transaction prices for the FTSE 100 futures contract 

trading on the LIFFE exchange (data are obtained from Liffedata). This exchange has made a 

clear distinction, between contracts that are either linked to an underlying asset or developed 

formally on the basis of links to the recently developed European currency, the euro, and those 

that remain linked to factors outside the currency area. The FTSE 100 represents the most 

actively traded example of the latter asset type. 

Data are available on the stock index contract for four specific delivery months per year, 

March, June, September and December. Prices are chosen from those contracts with delivery 

months on the basis of being the most actively traded using a volume crossover procedure. The 

empirical analysis is completed for sampling frequencies of 5 minutes, 1 hour and 1 day. The 

first interval is chosen so as to meet the objective of analyzing the highest frequency possible 

and capturing the most accurate risk estimates but also avoids microstructure effects such as bid 

ask effects. For the daily frequency, the price changes are computed by taking different starting 

(and ending) times to define the day: the beginning of the “day” can start from 9 am (the 

opening of the trading day) to 5 pm (the closing of the trading day). Nine different time-series of 

daily price changes are then obtained. Log prices (or log prices to the nearest trade available) for 

each interval are first differenced to obtain each period’s price change. The period of analysis is 

for the year 2000 involving 247 full trading days corresponding to an average life span of an 

exchange traded futures contract. The FTSE 100 futures daily interval encompasses 113 5-

minute intervals and nine hourly intervals. A number of issues arise in the data capture process. 

First, all holidays are removed. This entails New Year’s (2 days), Easter (2 days), May Day (1 

day), spring holiday (1 day), summer holiday (1 day), and Christmas (2 days). In addition, 
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trading took place over a half day during the days prior to the New Year and Christmas holidays 

and these full day periods are removed from the analysis. 

3.2 Basic statistics 

Basic statistics are reported in Table 1 for price changes (Panel A) and for squared price 

changes (Panel B). Concentrating on the first four moments of the distribution we study their 

behavior according to frequency of measurement. Most predominately the kurtosis increases as 

the frequency increases. For price changes, the (excess) kurtosis is equal to 0.26 for a 1-day 

frequency, 1.54 for a 1-hour frequency and 254.50 for a 5-minute frequency. The high kurtosis 

(higher than the value equal to 0 implied by normality) gives rise to the fat-tailed property of 

futures price changes. It is also illustrated by the probability density function and QQ plots of 

the shapes of price changes for different frequencies given in Figure 1. The extent of fat-tails is 

strongest for 5-minute realizations supporting the summary statistics. Also, the magnitude of 

values for these realizations can be very large as indicated by the scale of the density plots. 

These features generally result in the formal rejection of a Gaussian distribution using the 

Kolmogorov-Smirnov test.12 Deviations from normality are strongest at the highest frequency. 

The other moments emphasize the magnitude and scale of the realizations sampled at different 

frequencies. On average, price changes were negative during the year 2000 and unconditional 

volatility increases for interval size. Selected quantiles reinforce divergences in magnitude at 

different frequencies. Similar conclusions can be made for the proxy of volatility, the squared 

price changes, although the skewness and kurtosis are more pronounced. 

Notwithstanding the divergence in moments for different frequencies, it is interesting to 

examine daily price changes and volatility as it is these estimates that are used in the statistical 

analysis resulting in daily margin requirements. In addition to examining daily price changes 

using closing prices that are the norm in margin setting through the marking to market system, 

daily price changes are also defined with different time-intervals. Basic statistics are reported in 

Table 2 and a time-series plot for two of these time-intervals, using opening prices and closing 

prices are presented in Figure 2. Whilst the mean price changes remain reasonably constant, 

other moments are more diverging. For instance, skewness goes from -0.09 to -0.47 and the 

kurtosis statistic goes from being platykurtic (-0.32) to leptokurtic (1.52). Also the dispersion of 

various quantiles is considerable. Again inferences for the squared price changes are similar 

                                                

12 Whilst a formal rejection of normality for the full distribution of daily price is not recorded at common 
significance levels the tail behaviour in Figure 1 clearly indicates a fat-tailed property. 



 11 

although greater in magnitude. However it can be observed that both time-series have similar 

time-varying features evidencing volatility clustering with periods of high and low volatility but 

the diverging features are clearly demonstrated as suggested by the magnitude of realizations.  

Given the divergence indicated by the intraday analysis, it is interesting to incorporate 

these features in the margin setting process. 

3.3 Extreme value analysis 

Shape parameter estimates using different time-intervals to compute daily price changes 

are presented in Table 3 for the left tail (Panel A) and the right tail (Panel B). The point 

estimates are calculated using the weighted least squares technique that minimizes the small 

sample bias following Huisman et al (2001). The point estimates range from 2.57 to 6.34 and 

the values are generally in line with previous findings (see Cotter (2001)). As the shape 

parameter is positive, the extreme value distribution is a Fréchet distribution that is obtained for 

a fat-tailed distribution of price changes. 

We also use the shape parameter estimates to test if the second and the fourth moment of 

the distribution are well defined. For classical confidence level (say 5%), we are unable to reject 

the hypothesis that the variance is infinite in any scenario, whereas we are able to reject the 

hypothesis that the kurtosis is infinite in many scenarios. Advantageously the extreme value 

scaling law is applicable as it only requires the existence of a finite variance. 

3.4 Conditional estimation 

Time-varying behavior is described from fitting the APARCH model to daily price 

changes from different time-intervals at the end December 2000. The fat-tailed property is 

accounted for by assuming the error innovations belong to a Student-t distribution. The 

APARCH estimates consistently indicate that the conditional distributions exhibit persistence, 

with for example, past volatility impacting on current volatility as is typical of GARCH 

modeling at daily intervals.13 Furthermore the conditional distributions vary according to the 

time intervals analyzed that will give rise to different margin requirements.  

                                                

13 For instance the parameter estimates based on closing prices are: α0 = 0.014, α1 = 0.011, β1 = 0.962, 
γ1 = -0.999 and d = 1.855. Further details and coefficient estimates are available on request.  
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4. Model-based margin requirements 

This section presents empirical results for margin requirements obtained with daily price 

changes (4.1) and 5-minute and 1-hour price changes scaled to one day (4.2). 

4.1 Margin requirement based on daily price changes 

Table 4 presents margin requirements obtained with daily price changes for a long 

position (Panel A) and for a short position (Panel B). Margin requirements are computed for a 

given probability. Four different values are considered: 95%, 99%, 99.6% and 99.8% 

corresponding to average waiting periods of 20, 100, 250 and 500 trading days. Thinking of risk 

management for financial institutions, probabilities of 95% and 99% would be associated with 

ordinary adverse market events modeled by value at risk models, and probabilities of 99.6% and 

99.8% with extraordinary adverse market events considered in stress testing programs. In the 

margin setting context, the probability reflects the degree of prudence of the exchange: the 

higher the probability, the higher the margin level, the less risky the futures contract for market 

participants, but the less attractive the contract for investors. Margin requirements are also 

computed with various statistical models: three unconditional distributions (Gaussian, extreme 

value and historical) and a conditional process (the Asymmetric Power ARCH process). 

For the presentation of the results, the extreme value distribution will be the reference 

model as it presents many advantages (parametric distribution, limited model risk, limited event 

risk) and as the problem of margin setting is mainly concerned with extreme price changes. 

Beginning with the analysis of extreme value estimates, we first note that variation occurs in the 

estimates based on the different time-intervals to define daily price changes. For example, for a 

long position and a probability level of 95%, the estimated margin level ranges from 1.83% to 

2.05% of the nominal position. For the most conservative level of 99.8%, it ranges from 2.77% 

to 5.32%, almost double. Also there does not seem to be a systematic pattern to these deviations. 

For instance, for a probability of 95%, the minimum is obtained with 2 pm prices and the 

maximum for closing prices, and for a probability of 99.8%, the minimum is obtained with 3 pm 

prices and the maximum for 10 am prices. The same remarks apply to a short position. These 

findings suggest that the daily price change distributions vary to some extent based on different 

time-intervals sampled suggesting separate tail behavior for each price series. 

Turning to the estimates obtained under normality, some key insights are obtained. First, 

the measures are almost identical for long and short positions due to the assumption of a 

symmetric distribution of futures price changes and an average price change close to zero over 
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the period considered. In contrast, the extreme value distribution and the historical distribution 

take account of the possibility of non-symmetric features in line with the oft cited stylized facts 

of financial time series, and verified for the FTSE 100 futures contract of diverging upper and 

lower distribution shapes. However, in line with all the estimates, diverging margin estimates 

occur according to the time-intervals used to define price changes. For example, for a long 

position and a probability of 95%, the estimated margin varies from 1.83% using 3 pm prices to 

2.05% using closing prices. Traditional comparisons of extreme value and normal risk estimates 

suggest the latter underestimates tail behavior due to its exponential tail decline that results in 

relatively thin-tailed features. These findings hold for the FTSE 100 contract for high 

probability levels of 99.6% and 99.8%. In contrast, for the relatively low probability level of 

95%, this conclusion cannot be sustained and this is due to this confidence level representing a 

common rather than extreme threshold. For instance, the probability of this event occurring 

using daily data is once every 20 trading days representing a typical event rather than an 

extreme one, although it is the latter events that need to be guarded against to avoid investor 

default. 

Then turning to the historical estimates, diverging margin requirements again occur 

according to the time-interval chosen with the largest (smallest) estimate on a long position at 

the 95% level happening at 1 pm (10 am). These estimates are based on using the historical 

price series gathered for the year 2000. The historical estimates are confined to in-sample 

inferences due to the limited number of price observations. This implies that margin setting 

using the historical distribution that tries to avoid investor default may not be able to model the 

events that actually cause the default, whereas in contrast, extreme value theory specifically 

models these tail values. 

The margin requirements based on the unconditional distributions may be compared to 

the other estimates such as the conditional estimates using the APARCH process. Again it is 

clear that estimation at different time-intervals necessitates diverging margins. For instance, the 

out-of-sample estimates measured at 11 am and 1 pm (3 pm) represent the largest (smallest) 

possible margin requirements for a long position. Comparing the extreme value and APARCH 

estimates provides information on the distinction between unconditional and conditional 

environments facing margin setters. Distinct patterns occur based on the volatility estimation for 

the last trading day of the sample (December 29, 2000). 

An alternative way to present the results is to compute the probability for a given margin 

level. Results for a large and a very large futures price change, ±5% and ±10%, are given in 
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Table 5. These results can be thought of as margin requirements that would be violated at certain 

probabilities. The results indicate a number of characteristics about the inherent risk in futures 

contracts. For instance, if a very large margin level of 10% is imposed, the probability of it 

being violated on any individual day is very low. For example, the probability of exceeding a 

price change of 10% for a long position using 10 am prices is 0.06 in contrast to 0.01 using 

closing prices. In terms of average waiting time-period these extreme price movements based on 

10 am prices would occur approximately once every 15 years whereas in contrast, the 

occurrence for close of day prices is much less likely estimated at about every 103 years. 

Obviously the probability of exceeding a price movement increases as the price changes 

decrease so the likelihood of occurrence increases for 5% price moves. These results again 

imply that the starting point for the time interval used is an important factor in the setting of 

sufficient margin requirements as regardless of trading position there is a general finding that 

estimates taken using close of day prices are dominated by greater price movements at other 

intervals. In fact there is substantial variation in the excess probability estimates for different 

daily intervals. 

4.2 Daily margin requirement based on high-frequency price changes 

Table 6 presents daily margin requirements obtained with 5-minute and 1-hour price 

changes for a long position (Panel A) and for a short position (Panel B). Margin levels are 

scaled to one day (see Section 2 for the presentation of the scaling method) and compared to the 

ones obtained directly from daily price changes. The general lack of divergence of tail estimates 

for different frequencies supports the invariant with respect to aggregation property. Margin 

estimates are presented using the extreme value scaling procedure coupled with the average 

estimates based on daily estimates measured at different hourly intervals. Concentrating on the 

more extreme 99% level, the events that occur once every 100 trading days, the scaling 

procedure provides robust estimates in line with the average daily values. 

5. Summary and conclusions 

This paper proposes a method to incorporate the intraday dynamics of futures prices 

changes in daily margin setting thereby including lost information that is unavailable with the 

traditional approach of using closing prices in a marking to market system. The intraday futures 

price movements are relied on in two ways. First, daily prices movements and associated 

margins are measured using different time-intervals to define price changes, and second high-
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frequency 5-minute and 1-hour price changes are used to compute margins that are then scaled 

to give daily estimates. 

Margin requirements by definition are collateral to avoid investor default, but must also 

be set by the Clearinghouse at a level that ensures the competitiveness of an exchange. This 

paper examines margin setting in the context of investor default through statistical analysis of 

extreme price movements. In practice margin setting for the FTSE 100 contract uses a 

customized version of the SPAN system developed by the CME. In particular, the minimum 

margin requirement incorporates implicitly the assumption of a Gaussian distribution for a 

contract’s price movements as they must be able to match three standard deviations of price 

changes over the previous 60-day trading period. 

Alternative statistical approaches are available for margin setting with varying degrees of 

attractiveness including assuming a Gaussian distribution, estimation based on the historical 

distribution of past price changes, conditional modeling with a GARCH process and 

unconditional estimation with extreme value theory. The key feature in separating out the 

approaches is to examine their ability in dealing with the fat-tailed characteristic of futures price 

movements. Model risk arises with any approach that assumes a particular distribution for price 

changes. For instance conditional estimation that incorporates the time-varying properties 

characteristic of financial price changes still requires assumptions for the conditional price 

generating process. Furthermore the supposition of normality incorporates a relatively thin-

tailed distribution and leads to an underestimation of margin levels. The historical distribution of 

past price changes is incapable in dealing with the extreme price movements that result in 

investor default focusing only on in-sample probability levels. Finally, the approach advocated 

here using extreme value theory minimizes these problems by focusing exclusively on tail price 

movements thereby avoiding making inappropriate assumptions on a futures contract’s price 

generating process, and also allowing for out-of-sample extrapolation. Advantageously this 

paper merges the theoretical benefits of extreme value theory to the empirical benefits of 

analyzing intraday dynamics that include scaling from high to low frequency margin levels. 

After identifying the fat-tailed property of the futures price changes that becomes more 

pronounced for relatively high-frequency realizations, the paper identifies a number of key 

factors in margin setting. First and most important is the finding that intraday dynamics should 

be a key component in margin estimation. Daily price movements measured at different 

intervals can have a very tenuous relationship suggesting that the common procedure of using 

only close of day prices neglects the dynamics that investors actually face in trading futures. In 
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addition using high-frequency intraday realizations negates this problem even if estimating at a 

daily frequency through a simple scaling law of extreme value theory. Second the paper 

illustrates the relative dominance of extreme value theory over alternative statistical methods in 

margin setting. The weaknesses of the other approaches including the underestimation of 

Gaussian estimates in extreme price movement modeling, the inability to deal with relatively 

low probability levels using the historical distribution and the over reliance on a particular 

period of time associated with conditional estimation are all documented.
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Appendix 

Estimation of the shape parameter 

 

This appendix describes the semi-parametric estimation procedure for the shape 

parameter of the extreme value distribution. 

The widely used Hill (1975) moment estimator is used to determine tail quantiles and 

probabilities. The Hill estimator represents a maximum likelihood estimator of the tail index, the 

inverse of the shape parameter: 

(A1)  γ = 1/α = (1/m) 
� [log r(n + 1 - i) - log r(n - m)] for i = 1....m 

focusing on the maximum upper order statistics. This tail estimator is asymptotically 

normal (de Haan et al (1994)):  

(8)  (m)1/2/(rm +1 log(m/np))(rp - E{ rp })  ≈ N(0, γ2) 

An estimation issue is determining the optimal number of tail values, m (see Danielson 

et al (2001) for a discussion). The dilemma faced is that there is a trade-off between the bias and 

variance of the estimator with the bias decreasing and variance increasing with the number of 

values used. The approach introduced by Huisman et al (2001) is applied here that performs 

well under simulation. The use of the Hill estimator in the literature is due to a number of 

factors. The estimator is the most widely used with the most desirable time series properties 

(Hall and Welsh (1984)) with specific support for its application to financial time-series from 

simulation studies of it versus other estimators based on order statistics (Kearns and Pagan 

(1997)). Also, the Hill estimator does not require the existence of a fourth moment, a 

characteristic that is strongly debated for financial data. Most importantly, the Hill estimator is 

the intrinsic part of a larger procedure used in this study that examines tail behavior. In fact, 

Dacarogna et al (1995) show that by applying the highest frequency data possible ensures that 

the shape parameter provides the most efficient estimator of tail behavior exploiting the fractal 

nature of extremes. Intuitively a large (high) frequency data set has more observable extremes 

that a small (low) frequency one over the same time interval thereby allowing for stronger 

inferences of these rare events. Thus estimation of relatively low frequency margins is best 

achieved by estimating shape parameter values at high-frequencies and using a simple scaling 

law to extend for these aggregated price changes. A simple scaling factor similar to the √n used 
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for normal distribution is applicable. The high-frequency margin estimates are adjusted by an α-

root scaling law scaling (k1/α) with no additional estimation of extra parameters required. 
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Figure 1. Probability density function and QQ plot for price changes of the FTSE 100 
contract. 
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Note: these figures represent the probability density function and the QQ plots for price changes in the 
FTSE 100 future contract for the year 2000. Three different frequencies are used to compute the price 
changes: 5 minutes, 1 hour and 1 day. 
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Figure 2. Daily price changes and daily squared price changes of the FTSE 100 contract. 
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Note: these figures represent the history of the price change and squared price change of the FTSE 100 
future contract for the year 2000. Daily price changes are computed in two ways: from 9 am to 9 am on 
the following day (opening prices) and from 5 pm to 5 pm (closing prices). 
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Table 1. Basic statistics for the FTSE 100 contract price changes defined for different frequencies. 
Panel A. Price changes 

 Frequency of price changes 
 5-minutes 1-hour 1-day 

Mean 0.00 -0.02 -0.03 
Standard deviation 0.11 0.30 1.30 

Skewness -1.44 -0.28 -0.15 
Kurtosis 254.5 1.54 0.26 

    
0.08 0.05 0.04 Kolmogorov-Smirnov 

test of normality (0.00) (0.00) (0.31) 
    

Minimum -5.17 -1.57 -4.38 
1st quartile -0.05 -0.18 -0.77 
2nd quartile 0.00 -0.00 -0.03 
3rd quartile 0.05 0.16 0.76 
Maximum 4.34 1.29 3.20 

 

Panel B: Squared price changes 

 Frequency of price changes 
 5-minutes 1-hour 1-day 

Mean 0.01 0.09 1.70 
Standard deviation 0.21 0.17 2.55 

Skewness 107.99 5.24 2.69 
Kurtosis 12 815.78 46.5 10.38 

    
0.47 0.29 0.25 Kolmogorov-Smirnov 

test of normality (0.00) (0.00) (0.00) 
    

Minimum 0.00 0.00 0.00 
1st quartile 0.00 0.01 0.14 
2nd quartile 0.00 0.03 0.65 
3rd quartile 0.01 0.09 2.21 
Maximum 0.01 0.10 19.17 

Note: this table gives the basic statistics and empirical quantiles for the price changes (Panel A) and the 
squared price changes (Panel B). It also presents the results of the Kolmogorov-Smirnov test for 
normality with the p-value below in parentheses. Three different frequencies are used to compute the 
price changes: 5 minutes, 1 hour and 1 day. Data are price changes of the FTSE 100 future contract over 
the year 2000. 
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Table 2. Basic statistics for the FTSE 100 contract price changes defined with different 
time-intervals. 

Panel A. Price changes 

 Open 10 am 11 am 12 pm 1 pm 2 pm 3 pm 4 pm Close 
Mean -0.04 -0.04 -0.03 -0.03 -0.03 -0.03 -0.04 -0.03 -0.03 

Standard deviation 1.32 1.23 1.20 1.23 1.18 1.29 1.22 1.16 1.30 
Skewness -0.13 -0.10 -0.30 -0.47 -0.32 -0.13 -0.14 -0.09 -0.15 
Kurtosis 1.52 1.13 0.88 1.39 0.16 0.14 -0.05 -0.32 0.26 

          
0.05 0.04 0.05 0.06 0.04 0.03 0.04 0.03 0.04 Kolmogorov-Smirnov 

test of normality (0.10) (0.48) (0.11) (0.11) (0.46) (0.62) (0.57) (0.71) (0.31) 
          

Minimum -5.84 -4.92 -4.74 -5.73 -4.48 -4.54 -3.60 -3.13 -4.38 
1st quartile -0.79 -0.86 -0.78 -0.76 -0.80 -0.79 -0.79 -0.80 -0.77 
2nd quartile -0.04 -0.01 0.02 -0.01 0.03 -0.02 -0.04 0.02 0.00 
3rd quartile 0.78 0.74 0.73 0.81 0.80 0.86 0.78 0.76 0.76 
Maximum 4.26 4.06 3.59 3.09 2.59 3.20 3.02 2.48 3.20 

 

Panel B: Squared price changes 

 Open 10 am 11 am 12 pm 1 pm 2 pm 3 pm 4 pm Close 
Mean 1.73 1.51 1.44 1.51 1.40 1.65 1.48 1.35 1.70 

Standard deviation 3.24 2.66 2.44 2.79 2.06 2.42 2.06 1.74 2.55 
Skewness 5.38 4.49 4.27 6.58 4.03 3.15 2.25 1.75 2.69 
Kurtosis 43.77 27.90 26.24 65.77 27.84 16.08 5.94 2.90 10.38 

          
0.30 0.29 0.28 0.29 0.25 0.25 0.24 0.22 0.25 Kolmogorov-Smirnov 

test of normality (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 
          

Minimum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
1st quartile 0.09 0.13 0.13 0.14 0.13 0.18 0.16 0.12 0.14 
2nd quartile 0.63 0.62 0.58 0.60 0.64 0.72 0.63 0.60 0.58 
3rd quartile 2.05 1.70 1.74 1.94 1.85 1.86 1.95 1.76 2.21 
Maximum 34.13 24.24 22.46 32.87 20.06 20.60 12.93 9.79 19.17 

Note: this table gives the basic statistics and empirical quantiles for the price changes (Panel A) and the 
squared price changes (Panel B) over different time-intervals. It also presents the results of the 
Kolmogorov-Smirnov test for normality with the p-value below in parentheses. To define the price 
change, the starting time, which is equal to the ending time on the following day, varies from 9 am 
(opening of the market) to 5 pm (closing of the market). Data are price changes of the FTSE 100 future 
contract over the year 2000. 
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Table 3. Shape parameter estimates and test of the existence of moments. 

Panel A. Left tail 

 Open 10 am 11 am 12 pm 1 pm 2 pm 3 pm 4 pm Close 
Shape 

parameter α 
3.06 

(0.65) 
3.25 

(0.69) 
2.68 

(0.57) 
3.30 

(0.70) 
3.62 

(0.77) 
3.51 

(0.75) 
6.34 

(1.35) 
3.03 

(0.65) 
3.11 

(0.66) 
          

H0: 
α>2 

1.63 
(0.45) 

1.81 
(0.46) 

1.18 
(0.38) 

1.85 
(0.47) 

2.10 
(0.48) 

2.02 
(0.48) 

3.21 
(0.50) 

1.60 
(0.45) 

1.68 
(0.45) 

          
H0: 
α>4 

-1.43 
(0.00) 

-1.08 
(0.00) 

-2.32 
(0.00) 

-0.99 
(0.00) 

-0.49 
(0.00) 

-0.65 
(0.00) 

1.73 
(0.46) 

-1.50 
(0.00) 

-1.33 
(0.00) 

 

Panel B. Right tail 

 Open 10 am 11 am 12 pm 1 pm 2 pm 3 pm 4 pm Close 
Shape 

parameter α 
2.58 

(0.55) 
3.63 

(0.77) 
4.34 

(0.93) 
3.77 

(0.80) 
4.20 

(0.90) 
3.48 

(0.74) 
4.96 

(1.06) 
4.08 

(0.87) 
3.64 

(0.78) 
          

H0: 
α>2 

1.05 
(0.35) 

2.11 
(0.48) 

2.53 
(0.49) 

2.20 
(0.49) 

2.46 
(0.49) 

2.00 
(0.48) 

2.80 
(0.50) 

2.39 
(0.49) 

2.11 
(0.49) 

          
H0: 
α>4 

-2.59 
(0.00) 

-0.48 
(0.00) 

0.37 
(0.14) 

-0.29 
(0.00) 

0.22 
(0.09) 

-0.70 
(0.00) 

0.91 
(0.32) 

0.09 
(0.04) 

-0.47 
(0.00) 

Note : this table gives the shape parameter estimates for the left tail (Panel A) and the right tail (Panel B) 
of the distribution of daily price changes and a test of the existence of the moments of the distribution. 
The first line of the table gives the shape parameter estimate obtained with the method developed by 
Huisman et al (2001) with the standard error below in parentheses. The second and third lines give the 
results of a test of the existence of the second moment (the variance) and the fourth moment (the 
kurtosis) with the p-value below in parentheses. As the shape parameter corresponds to the highest 
moment defined for the distribution, the null hypotheses are defined as follows: H0: α>2 and H0: α>4. To 
define the price change, the starting time (which is equal to the ending time on the following day) varies 
from 9 am (opening of the market) to 5 pm (closing of the market). Data are price changes of the FTSE 
100 future contract over the year 2000. 
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Table 4. Margin levels for given probabilities based on daily price changes. 

Panel A. Long position 

Probability 
(waiting period) Model Open 10 am 11 am 12 pm 1 pm 2 pm 3 pm 4 pm Close 

Gaussian 2.21 2.06 2.00 2.05 1.97 2.15 2.05 1.94 2.17 
Extreme value 1.85 1.95 1.89 1.84 2.04 1.83 1.85 1.95 2.05 

Historical 1.90 1.87 2.23 2.08 2.34 2.14 2.04 2.28 2.28 
95% 

(20 days) 
APARCH 2.05 2.22 2.63 2.55 3.19 2.94 2.65 2.90 2.91 

           
Gaussian 3.11 2.90 2.82 2.89 2.78 3.03 2.88 2.73 3.05 

Extreme value 2.94 3.22 3.12 2.70 2.78 2.42 2.26 2.74 2.93 
Historical 2.98 3.23 3.06 2.76 2.90 2.89 2.51 3.19 3.25 

99% 
(100 days) 

APARCH 3.62 3.62 3.62 3.12 3.90 3.85 3.29 4.38 4.39 
           

Gaussian 3.54 3.30 3.21 3.29 3.16 3.45 3.28 3.11 3.48 
Extreme value 3.83 4.29 4.15 3.35 3.32 2.84 2.54 3.32 3.59 

Historical 3.59 3.39 3.41 3.01 3.01 3.10 2.71 3.31 3.45 
99.60% 

(250 days) 
APARCH 4.13 3.92 3.85 3.73 4.88 4.02 3.55 4.77 4.67 

           
Gaussian 3.84 3.58 3.48 3.57 3.43 3.74 3.55 3.37 3.77 

Extreme value 4.67 5.32 5.15 3.95 3.79 3.20 2.77 3.84 4.18 
Historical na na na na na na na na na 

99.80% 
(500 days) 

APARCH 4.88 4.61 6.51 4.99 6.51 4.91 3.63 5.51 5.43 

 

Panel B. Short position  

Probability 
(waiting period) Model Open 10 am 11 am 12 pm 1 pm 2 pm 3 pm 4 pm Close 

Gaussian 2.13 1.98 1.94 1.99 1.91 2.09 1.97 1.88 2.11 
Extreme value 1.70 1.76 1.80 1.65 1.96 1.74 1.77 2.06 1.94 

Historical 1.85 1.72 1.75 1.73 2.06 2.03 1.92 2.19 2.10 
95% 

(20 days) 
APARCH 2.28 2.14 2.33 2.16 3.12 2.86 2.66 3.33 3.24 

           
Gaussian 3.03 2.82 2.76 2.83 2.72 2.97 2.80 2.67 2.99 

Extreme value 2.69 2.91 2.98 2.41 2.67 2.31 2.16 2.89 2.77 
Historical 2.76 2.82 2.67 2.47 2.82 2.50 2.37 2.78 2.77 

99% 
(100 days) 

APARCH 3.51 3.38 3.68 3.13 5.22 3.97 3.33 4.51 4.51 
           

Gaussian 3.42 3.46 3.22 3.15 3.23 3.10 3.39 3.20 3.05 
Extreme value 3.87 3.87 3.97 2.99 3.18 2.71 2.42 3.51 3.40 

Historical 3.70 3.01 2.90 2.58 2.97 2.70 2.48 2.96 3.20 
99.60% 

(250 days) 
APARCH 4.50 4.45 3.83 3.22 5.56 4.55 3.47 4.93 5.40 

           
Gaussian 3.76 3.50 3.42 3.51 3.37 3.68 3.47 3.31 3.71 

Extreme value 4.80 4.80 4.93 3.53 3.63 3.05 2.63 4.06 3.96 
Historical na na na na na na na na na 

99.80% 
(500 days) 

APARCH 4.94 4.55 3.96 3.25 5.87 4.60 3.54 5.14 5.76 
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Note : this table gives the margin level for a long position (Panel A) and a short position (Panel B) for 
different probability levels ranging from 95% to 99.8% or equivalently different waiting periods ranging 
from 20 trading days (1 month) to 500 trading days (2 years). Different statistical models are used: three 
unconditional distributions (the Gaussian distribution, the extreme value distribution and the historical 
distribution) and a conditional process (the Asymmetric Power ARCH or APARCH). The historical 
estimates are not available (na) for out of sample inferences due to data unavailability. To define the 
price change, the starting time (which is equal to the ending time on the following day) varies from 9 am 
(opening of the market) to 5 pm (closing of the market). Data are price changes of the FTSE 100 future 
contract over the year 2000. 
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Table 5. Extreme value probabilities for given margin levels. 

Panel A. Long position 

Margin level Open 10 am 11 am 12 pm 1 pm 2 pm 3 pm 4 pm Close 
0.39 0.60 0.54 0.18 0.12 0.04 0.00 0.14 0.22 

-5% 
(2.57) (1.66) (1.84) (5.51) (8.60) (26.29) (237.08) (7.03) (4.53) 

          
0.03 0.06 0.06 0.01 0.00 0.00 0.00 0.01 0.01 

-10% 
(28.73) (15.39) (16.90) (102.89) (318.81) (1418.71 (62485.51) (187.70) (103.83) 

 

Panel B. Short position  

Margin level Open 10 am 11 am 12 pm 1 pm 2 pm 3 pm 4 pm Close 
0.29 0.43 0.47 0.11 0.09 0.03 0.00 0.19 0.17 

-5% 
(3.49) (2.30) (2.11) (8.84) (10.68) (34.60) (349.89) (5.40) (5.81) 

          
0.03 0.05 0.05 0.01 0.00 0.00 0.00 0.01 0.01 

-10% 
(38.96) (21.34) (19.44) (165.15) (395.93) (1867.17) (92216.90) (144.21) (133.13) 

Note : this table gives the extreme value distribution probability levels and the corresponding waiting 
periods below in parentheses for given margin levels for a long position (Panel A) and a short position 
(Panel B). Two margin levels are considered: ±5% and ±10%. To define the price change, the starting 
time (which is equal to the ending time on the following day) varies from 9 am (opening of the market ) 
to 5 pm (closing of the market). Data are price changes of the FTSE 100 future contract over the year 
2000. 



 29 

Table 6: Daily margin levels obtained with the extreme value distribution based on 5-
minute, 1-hour and 1-day price changes. 

Panel A. Long position  

Probability Frequency of price changes 
(waiting period) 5 minutes 1 hour 1 day 

95% 
(20 days) 

1.87 1.92 1.92 

99% 
(100 days) 

3.09 2.91 2.79 

99.60% 
(250 days) 

3.34 3.68 3.47 

99.8% 
(500 days) 

4.05 4.39 4.10 

 

Panel B. Short position  

Probability Frequency of price changes 
(waiting period) 5 minutes 1 hour 1 day 

95% 
(20 days) 

1.81 1.54 1.82 

99% 
(100 days) 

3.03 2.41 2.64 

99.60% 
(250 days) 

3.12 2.99 3.32 

99.8% 
(500 days) 

3.78 3.53 3.93 

Note : this table gives the daily margin levels obtained with the extreme value distribution for a long 
position (Panel A) and a short position (Panel B) for different probability levels ranging from 95% to 
99.8% or equivalently different waiting periods ranging from 20 trading days (1 month) to 500 trading 
days (2 years). Three different frequencies are used to compute the price changes: 5 minutes, 1 hour and 
1 day. Margin levels obtained with 5-minute price changes and 1-hour price changes are scaled to 
obtained daily margin levels. Margin levels obtained from daily price changes correspond to the average 
over the margin levels obtained with different time-intervals. Data are price changes of the FTSE 100 
future contract over the year 2000. 

 


