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Spectral Risk Measures and the Choice of Risk Aversion Function 

By 

Kevin Dowd and John Cotter
*
 

 

Abstract 

Spectral risk measures are attractive risk measures as they allow the user to obtain 

risk measures that reflect their risk-aversion functions. To date there has been 

very little guidance on the choice of risk-aversion functions underlying spectral 

risk measures. This paper addresses this issue by examining two popular risk 

aversion functions, based on exponential and power utility functions respectively. 

We find that the former yields spectral risk measures with nice intuitive 

properties, but the latter yields spectral risk measures that can have perverse 

properties. More work therefore needs to be done before we can be sure that 

arbitrary but respectable utility functions will always yield ‘well-behaved’ 

spectral risk measures.  
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1. Introduction 

 

One of the most interesting and potentially most promising recent developments 

in the financial risk area has been the theory of spectral financial risk measures, 

recently proposed by Acerbi (2002, 2004). Spectral risk measures (SRMs) are 

closely related to the coherent risk measures proposed a little earlier by Artzner et 

alia (1997, 1999), and share with the coherent risk measures the highly desirable 

property of subadditivity (i.e., that the risk of the sum is no more than the sum of 

the individual risks
1
). It is also well-known by now that the most widely used risk 

measure, the Value-at-risk (VaR), is not subadditive, and the work by Artnzer et 

alia and Acerbi has shown that many (if not most) of the inadequacies of VaR as 

a risk measure can be traced to its non-subadditivity.  

 One of the nice features of SRMs is that they relate the risk measure itself 

to the user’s risk-aversion – in effect, the spectral risk measure is a weighted 

average of the quantiles of a loss distribution, the weights of which depend on the 

user’s risk-aversion function. SRMs can be applied to many different problems. 

For example, Acerbi (2004) suggests that they can be used to set capital 

requirements or obtain optimal risk-expected return tradeoffs, and Cotter and 

Dowd (2006) suggest that SRMs could be used by futures clearinghouses to set 

margin requirements that reflect their corporate risk aversion.  

 Spectral risk measures therefore enable us to link the risk measure to the 

user’s attitude towards risk, the underlying objective being to ensure that if a user 

is more risk averse, other things being equal, then that user should face a higher 

risk, as given by the value of the SRM. However there is very little guidance on 

what a suitable risk aversion function might entail. For example, Szegö (2002) 

describes the process of multiplying coherent risk measures by an admissible risk 

aversion function but does not specify what an admissable risk aversion function 

might be. Moreover Acerbi (2004, p. 175) calls for the identification of suitable 

additional criteria over and above the coherent properties to assist the risk 

                                            

1 More formally, if (.)ρ  is a measure of risk, and A and B are two positions, subadditivity means 

that )()()( BABA ρρρ +≤+ . Subadditivity is a crucial condition because it ensures that our risks 

do not increase overall when we put them together. As Acerbi and others have pointed out, any 

risk measure that does not satisfy subadditivity has no real claim to be regarded as a ‘respectable’ 

risk measure at all (see, e.g., Acerbi (2004, p. 150)).  
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manager in choosing their risk aversion function, but he himself only illustrates 

one particular risk-aversion function – namely, an exponential one.   

 This paper investigates SRMs further. In particular, it examines two 

alternative types of SRM based on alternative underlying utility functions: an 

exponential SRM based on an exponential utility function, which is equivalent to 

the one that Acerbi studies, and a power SRM based on a power utility function. 

As far as we are aware, these latter SRMs have not been studied before. They are 

however a natural object of study as the power utility function is widely used. We 

find that the exponential utility function leads to ‘well-behaved’ risk-aversion 

functions and a ‘well-behaved’ SRM, but the power utility function does not. 

Indeed, we find that the power utility function can lead to a situation where an 

increase in risk aversion leads to a decrease in the value of the SRM – a clear sign 

of a ‘badly behaved’ SRM. These results are surprising, and suggest that we 

cannot simply pull a respectable utility function off the shelf, obtain its risk-

aversion function and thence its SRM, and necessarily expect that this SRM will 

be ‘well-behaved’. 

 The article is organised as follows. Section 2 sets out the essence of 

Acerbi’s theory of spectral risk measures. Section 3 explains spectral risk 

measures based on exponential utility functions, and section 4 examines spectral 

risk measures based on a power utility function. Section 5 concludes. 

 

2. Spectral Risk Measures 

 

Following Acerbi (2004), consider a risk measure φM  defined by: 

 

(1)                                                 ∫=
1

0

)( dpqpM pφφ  

 

where pq  is the p loss quantile and )( pφ  is a user-defined weighting aversion 

function with weights defined over p, where p is a range of cumulative 

probabilities ]1,0[∈p . We can think of φM  as the class of quantile-based risk 
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measures, where each individual risk measure is defined by its own particular 

weighting function.  

 Two well-known members of this class are the VaR and the Expected 

Shortfall (ES). The VaR at the α  confidence level is: 

 

(2)                                                      αα qVaR =       

 

The VaR places all its weight on a single quantile that corresponds to a chosen 

confidence level, and places no weight on any others, i.e., with the VaR risk 

measure, )( pφ  takes the degenerate form of a Dirac delta function that gives the 

outcome α=p  an infinite weight and gives every other outcome a zero weight. 

 For its part, the ES at the confidence level α  is the average of the worst 

α−1  of losses and (in the case of a continuous loss distribution) is: 

 

(3)                                            ∫−
=

1

1

1

α

α
α

dpqES p                                                      

 

With the ES, )( pφ  takes gives tail quantiles a fixed weight of 
α−1

1
 and gives 

non-tail quantiles a weight of zero.  

 A drawback with both of these risk measures is that they inconsistent with 

risk aversion in the traditional sense. This can be illustrated in the context of the 

theory of lower partial moments (see Bawa (1975), Fishburn (1977) and 

Grootveld and Hallerbach (2004)). Given a set of returns r  and a target return 

*r , the lower partial moment of order 0≥k  around *r  is equal to 

}]*,0{[max( k
rrE − . The parameter k  reflects the user’s degree of risk aversion, 

and the user is risk-averse if 1>k , risk-neutral if 1=k  and risk-loving if 

10 << k . It can then be shown that the VaR is a preferred risk measure only if 

0=k , i.e., the VaR is our preferred risk measure only if we are very risk-loving! 

The ES would be our preferred risk measure if 1=k , and this tells us that the ES 

is our preferred risk measure only if the user is risk-neutral between better and 

worse tail outcomes.   
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 A user who is risk averse might prefer to work with a risk measure that 

take account of his/her risk aversion, and this takes us to the class of spectral risk 

measures (SRMs). In loose terms, an SRM is a quantile-based risk measure that 

takes the form of (1) where )( pφ  reflects the user’s degree of risk aversion. More 

precisely, we can consider SRMs as the subset of φM  that satisfy the following 

properties of positivity, normalisation and increasingness due originally to 

Acerbi:
2
 

1. Positivity: 0)( ≥pφ . 

2. Normalisation: ∫ =
1

0

1)( dppφ . 

3. Increasingness: 0)( ≥′ pφ . 

The first coherent condition requires that the weights are weakly positive and the 

second requires that the probability-weighted weights should sum to 1, but the 

key condition is the third one. This condition is a direct reflection of risk-

aversion, and requires that the weights attached to higher losses should be no less 

than the weights attached to lower losses. Typically, we would also expect the 

weight )( pφ  to rise with p.
3
  In a ‘well-defined’ case, we would expect the 

weights to rise smoothly, and the more risk-averse the user, the more rapidly we 

would expect the weights to rise.  

 A risk measure that satisfies these properties is attractive not only because 

it takes account of user risk-aversion, but also because such a risk measure is 

known to be coherent.
4
  

 There still remains the question of how to specify )( pφ , and perhaps the 

most natural way to obtain )( pφ  is from the user’s utility function
5
. 

                                            
2
 See Acerbi (2002, 2004). However, it is worth pointing out that he deals with a distribution in 

which profit outcomes have a positive sign, whereas we deal with a distribution in which loss 

outcomes have a positive sign. His first condition is therefore a negativity condition, whereas ours 

is a positivity condition, but this difference is only superficial and there is no substantial difference 

between his conditions and ours.   

3
 The conditions set out allow for the degenerate limiting case where the weights are flat for all p 

values, and such a situation implies risk-neutrality and is therefore inconsistent with risk-aversion. 

However, we shall rule out this limiting case by imposing the additional (and in the circumstances 

very reasonable) condition that )( pφ  must rise over at least some point as p increases from 0 to 

1.  

4
 This follows from Acerbi (2004, Proposition 3.4). 
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3. Exponential Spectral Risk Measures 

 

Suppose, for example, that we specify the following exponential utility function 

defined over random outcomes x:  

 

(4)                                                    ax
exU

−−=)(  

 

where 0>a  is the Arrow-Pratt coefficient of absolute risk aversion (ARA). The 

coefficients of absolute and relative risk aversion are: 

 

(5a)                                             a
xU

xU
xRA =

′

′′
−=

)(

)(
)(  

(5b)                                           xa
xU

xUx
xRR =

′

′′
−=

)(

)(
)(  

 

We now set 

 

(6)                                                  )1()( pa
ep

−−= λφ   

 

where λ  is an unknown positive constant. This clearly satisfies properties 1 and 

3, and we can easily show (by integrating )( pφ  from 0 to 1, setting the integral to 

1 and solving for λ ) that it satisfies 2 if we set  

 

 (7)                                                     
a

e

a
−−

=
1

λ  

 

                                                                                                                       

5
 See also Bersimas et alia (2004). 
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Hence, substituting (7) into (6) gives us the exponential weighting function (or 

risk-aversion function) corresponding to (4):
6
 

 

(8)                                                 
a

pa

e

ae
p

−

−−

−
=

1
)(

)1(

φ  

 

This risk-aversion function is illustrated in Figure 1 for two alternative values of 

the ARA coefficient, a. Observe that this weighting function has a nice shape: for 

the higher p values associated with higher losses, we get bigger weights for 

greater degrees of risk-aversion. In addition, as p rises, the rate of increase of 

)( pφ  rises with the degree of risk-aversion.  

 

Insert Figure 1 here 

 

 The SRM based on this risk-aversion function, the exponential SRM, is 

then found by substituting (8) into (1), viz.:
7
  

 

(9)                         ∫=
1

0

)( dpqpM pφφ = ∫
−−

−−
=

1

0

)1(

1
dpqe

e

a
M p

pa

aφ  

 

 We also find that the risk measure itself rises with the degree of risk-

aversion, and some illustrative results are given in Table 1. For example, if losses 

are distributed as standard normal and we set 5=a , then the spectral risk measure 

is 1.0816. But if we increase a to 25, the measure rises to 1.9549: the greater the 

risk-aversion, the higher the exponential spectral risk measure.   

                                            
6 

Strictly speaking, Acerbi’s proposition 3.19 in Acerbi (2004, p. 182) defines his weighting 

function in terms of a parameter γ >0, but his weighting function and (7) are equivalent subject to 

the proviso that γ =1/a. 
7
 Estimates of (9) were obtained using Simpson’s rule numerical quadrature with n=10,000,001 

‘slices’. The actual calculations were carried out using the CompEcon function in MATLAB given 

in Miranda and Fackler (2002). When estimating spectral risk measures we find that estimates 

converge only slowly – and from below – as n increases (see Dowd (2005, Table 3.4). It is 

therefore important to use a value of n that produces estimates close to the limiting value of the 

SRM as n becomes very large, and some trials with alternative values of n suggested that 

n=10,000,001 is adequate for our purpose here. We also use n=10,000,001 rather than the more 

obvious n=10,000,000 because the Simpson’s rule algorithm requires n to be odd. 
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Insert Table 1 here 

 

 The relationship of the exponential SRM and the coefficient of absolute 

risk aversion is illustrated further in Figure 2. We can see that the risk measure 

rises smoothly as the coefficient of risk aversion increases, as we would expect.  

 

Insert Figure 2 here 

 

4. Power Spectral Risk Measures 

 

We can also obtain SRMs based on other utility functions, and a popular 

alternative to the exponential utility function is the power utility function
8
:  

 

(10)                                               
c

x
xU

c

−
=

−

1
)(

1

  

 

where 10 << c  is the Arrow-Pratt coefficient of relative risk aversion (RRA). 

This function has a constant coefficient of relative risk aversion and so belongs to 

the family of Constant Relative Risk Aversion (CRRA) utility functions. Its 

coefficients of absolute and relative risk aversion are: 

 

(11a)                                      
x

c

xU

xU
xRA =

′

′′
−=

)(

)(
)(   

(11b)                                     c
xU

xUx
xRR =

′

′′
−=

)(

)(
)(  

 

We convert the utility function (10) into a risk-aversion function )( pφ  using  

 

(12)                                             
c

p
p

c

−

−
=

−

1

)1(
)(

1

λφ  

                                            

8
 This power function is heavily used and represents a special case of the Hyberbolic Absolute 

Risk Aversion (HARA) family. 
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where λ  is another unknown constant. In this case, 0>λ  suffices to ensure that 

conditions 1 and 3 hold, and this risk-aversion function satisfies property 2 if we 

set  

 

(13)                                                  )1( cc −=λ  

 

Hence, the power utility function leads to the power risk-aversion function: 

 

(14)                                                1)1()( −−= cpcpφ  

 

The power risk-aversion function (13) is plotted in Figure 3 for illustrative  

c  values equal to 0.7 and 0.9. This shows that the )( pφ  curve for the higher 

degree of RRA is initially higher than the )( pφ  curve for the lower degree of 

RRA, but then falls below it. This tells us that with higher risk aversion, relatively 

more weight is placed on the lower losses and relatively less weight is placed on 

the higher losses, compared to the case with lower risk aversion! This is clearly 

odd, even though the )( pφ  function satisfies the properties 1-3 above. 

 

Insert Figure 3 here 

 

The resulting risk measure (obtained by substituting (14) into (1)) is then 

 

(15)                        ∫=
1

0

)( dppqM pφφ = ∫
−−=

1

0

1
)1( dppcqM

c

pφ  

 

This risk measure also satisfies conditions 1 to 3 above and so qualifies as an 

SRM as we have defined it. This also means that it is coherent. 

Figure 4 shows a plot of the power SRMs against c  and Table 2 gives 

some illustrative numerical values for losses distributed as standard normal. The 

SRM plot is surprising: it starts from a value of 0 when c  is very close to 0, then 

rises sharply to peak at a c  value of about 0.11, and thereafter falls smoothly to 0, 
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which it approaches as c  approaches 1: the greater the risk-aversion, the lower 

the power spectral risk measure. So, for example, if losses are distributed as 

standard normal and we set c = 0.1, the spectral risk measure is 1.9278, but if we 

increase c to 0.9, the measure falls to 0.0968. The initial rise in SRM is exactly 

what we would expect of a ‘well-behaved’ SRM, but the subsequent fall from its 

peak value is surprising: the fall from its peak value tells us, paradoxically, that 

the SRM falls as the user becomes more risk-averse. The explanation for this 

curious result can be seen in Figure 3: the higher the coefficient of relative risk 

aversion, the more weight is placed on the low loss outcomes on the left-hand side 

and the lower the weight placed on the high loss outcomes on the right-hand side. 

 

Insert Figure 4 here 

Insert Table 2 here 

 

  Thus, we have a spectral risk measure that satisfies Acerbi’s conditions, 

and yet the weighting function and resulting risk measure are manifestly ‘badly-

behaved’ except for rather low values of c .
9
 Conditions 1 to 3 are clearly not 

sufficient to ensure that we get a ‘well-behaved’ risk aversion function or a ‘well-

behaved’ SRM.  

 These findings suggest that we might wish to change the conditions 

required of an SRM. For example, we might impose additional ‘well-

behavedness’ conditions on the risk-aversion function. However, the cost of doing 

so would be to restrict our choice of risk-aversion function, i.e., so we could not 

pull any risk-aversion function that satisfies 1 to 3 off the shelf and input it into 

(1) to get a ‘well-behaved’ risk measure. Alternatively, we might still wish to use 

a power SRM if we were confident that we had a c  value that lay within the range 

where the power SRM is ‘well-behaved’.  

 However, neither of these suggestions resolves the underlying problem: if 

we have a power utility function with an arbitrary coefficient of relative risk 

aversion in the maximum permissible range of (0,1), then how should we obtain a 

‘well-behaved’ SRM that reflects this utility function’s aversion to risk? 

                                            

9
 This example based on a power function also illustrates that at least some HARA functions will 

also produce ‘badly-behaved’ risk measures.  
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5. Conclusions 

 

This paper has examined spectral risk measures based on exponential and power 

utility functions. We find that the exponential utility function leads to risk-

aversion functions and spectral risk measures with intuitive and nicely behaved 

properties. However, we find that the same is not true of the power utility 

function. This produces risk-aversion functions and related risk measures that are 

patently unsatisfactory. Indeed, for some ranges of the coefficient of relative risk 

aversion we find that an increase in risk aversion leads to a decrease in the value 

of the power SRM. This result is consistent with the definition of an SRM – and 

with the axioms of coherence too – but runs very much counter to the spirit of 

spectral risk measures, which is that SRMs should reflect risk aversion in a non-

perverse way. 

 These power utility findings also indicate that we cannot assume any risk 

aversion function that we like, and necessarily get well-behaved risk measures: 

after all, the power function is quite a reasonable one, and yet it produces very 

unreasonable spectral risk measures. Thus, the choice of risk aversion functions 

needs to be restricted if we are to be sure of getting well-behaved spectral risk 

measures from arbitrary but otherwise respectable utility or risk-aversion 

functions. How best to do that is a good subject for future research.  
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FIGURES 

 

 

Figure 1: Exponential Risk Aversion Functions 

 

Notes: Weights are based on the exponential risk-aversion function (8). 
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Figure 2: Plot of Exponential Spectral Risk Measure Against the Coefficient 

of Absolute Risk Aversion: Standard Normal Loss Distribution 
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Notes: As per Notes to Table 1. 

 



 

 

 

 

 15 

 

Figure 3: Power Risk Aversion Functions 
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Notes: Weights are based on the power risk-aversion function (14). 
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Figure 4: Plot of Power Spectral Risk Measure Against the Coefficient of 

Relative Risk Aversion: Standard Normal Loss Distribution 
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Notes: As per Notes to Table 2. 
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Table 1: Values of Exponential Spectral Risk Measure with Standard 

Normal Losses 

Coefficient of Absolute Risk 

Aversion 

Exponential Spectral Risk Measure 

1 0.2781 

5 1.0816 

25 1.9549 

100 2.5055 

Notes: Estimates are of (9) obtained using Simpson’s rule numerical 

quadrature with n=10,000,001 ‘slices’. The actual calculations were carried 

out using the CompEcon function in MATLAB given in Miranda and 

Fackler (2002).  

 

 

Table 2: Values of Exponential Spectral Risk Measure with Standard 

Normal Losses 

Coefficient of Relative Risk 

Aversion 

Power Spectral Risk Measure 

→ 0 0 

0.1 1.9278 

0.5 0.7026 

0.9 0.0968 

→ 1 0 

Note: Estimates are of (15) obtained using Simpson’s rule numerical 

quadrature with n=10,000,001 ‘slices’. The actual calculations were carried 

out using the CompEcon function in MATLAB given in Miranda and 

Fackler (2002).  

 


