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1. Introduction

It has been shown that fuzzy sets (Zadeh, 1965), probability theory, rough sets (Pawlak, 1982) and other

mathematical tools have inherent difficulties in dealing with uncertainties and modeling complexities in

economics, engineering and other scientific fields. As Molodtsov (1999) points out, the main reason for

the existence of these difficulties is the inadequacy of the parametrization tool of those theories. In light of

these mathematical rigidities Molodtsov (1999) proposed a new novel approach, so-called soft set theory,

for modeling vagueness and uncertainty. Soft sets can be regarded as a special case of context-dependent

fuzzy sets, as defined in Thielle (1999). Soft set theory can be applied to different fields of research, ranging

from operations research and measurement theory to Riemann integration and game theory, so in that sense

it is an interdisciplinary mathematical approach.

In classical mathematics, in order to deal with problems under uncertainty, we construct models of an

object and define the exact solution of these mathematical models. Usually this solution is associated with a

high degree of complexity so that the idea of an approximate solution is introduced. On the other hand, in soft

set theory, the initial description of an object has an approximate nature which is free from any restrictions,

thus making this theory particularly appealing and easily applicable in practice. Any parametrization we

prefer using words and sentences, real numbers, and functions, can be used to describe the object.

Since the seminal work of Molodtsov (1999), research on soft set theory has been progressing at a rapid

pace. Maji et al. (2002, 2003) present an application of soft sets in decision making problems using the rough

mathematics proposed by Pawlak (1982) and prove various theoretical propositions on soft set operations.

Chen et al. (2005) propose a definition of parameterization reduction of soft sets and compare it with the

concept of attributes reduction in rough sets theory. Aktaş and Çağman (2007) compare soft sets to fuzzy

and rough sets, provide a definition of soft groups, and derive their basic properties following Molodtsov’s

definition of soft sets. Çağman and Enginoğlu (2010) use newly defined products of soft sets and uni-int

decision functions to construct uni-int decision making methods applicable to problems with embedded

uncertainties 4.

4Other studies on soft set theory applications include those of Bakshi et al., 2016; Murthy and Maheswari, 2017; Kandemir, 2018;

Aygün and Kamacı, 2019; Dalkılıç, 2021; Akram et al., 2021; Maharana and Mohanty, 2021.
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Recent reviews of academic papers written on soft set theory applications include those of Zahedi

Khameneh and Kılıçman (2019) and Zhan and Alcantud (2019). Zahedi Khameneh and Kılıçman (2019)

provide a survey study of multi-attribute decision making based on soft set theory. Multi-attribute decision

making is one class of multiple criteria decision making problems in which the domain of alternatives is

discrete, and requires to attribute comparisons involving some type of trade-off between pre-specified alter-

natives, either implicitly or explicitly. Conventional multiple criteria decision making techniques focus on

group decisions as opposed to strategic games (conflicts) in which each decision maker makes individual

choices that together determine the outcome. Zhan and Alcantud (2019) provide a survey of parameter re-

duction algorithms for soft sets. The objective of these algorithms is to reduce the cardinality or size of the

parameter set. The scope of this reduction lies primarily in the implied reduction of computationally costly

tests that are necessary to determine a solution to a decision making process. The primary difference between

these algorithms and our work lies in the fact that in a game, expressed here as a soft set, the parameter set

coincides with the set of all strategy combinations or strategy profiles and this set is irreducible. In other

words, one cannot dispense with a strategy combination but instead has to search through each combination

in order to determine a game’s solution. This is true regardless of whether a game is represented as a soft set

or not.

Apart from works based on classical soft set theory, there are various hybrid approaches that combine

elements from soft set models and other mathematical models. For example, Maji et al. (2001) introduce the

concept of fuzzy soft sets by combining soft sets with fuzzy sets. Majumdar and Samanta (2010) propose the

generalized fuzzy soft sets, whilst Feng et al. (2010) suggest three different types of hybrid models, namely

rough soft sets, soft rough sets, and soft-rough fuzzy sets. Surprisingly, research on game theory using soft

set applications is very limited. Deli and Çağman (2016a) introduce the definitions of dominated strategy,

saddle point solution, and Nash equilibrium (NE) in pure strategies for a two-player game giving a natural

extension to n-person games. Deli and Çağman (2016b) give a probabilistic equilibrium solution method of

two-person soft games (tps-games). Fernández et al. (2018) propose an application of soft sets to describe

coalitions in cooperative games which permits to study new situations of asymmetric players in games.5

5There are a number of studies that have dealt with zero-sum games with fuzzy payoffs and fuzzy goals game theory, such as those

of Maeda (2003), Bector et al. (2004), Vijay et al. (2005), and Cevikel and Ahlatçioğlu (2010), among others. Other studies that use

2



Soft set theory, as a generic mathematical tool, is well-suited to address financial decision-making prob-

lems under uncertainty. Although soft set theory is novel, there are a few studies that have used soft sets

in financial applications. Xu et al. (2014) use soft set theory to design a parameter reduction method that

could complement conventional principal component analysis, aiming at selecting financial ratios for busi-

ness failure prediction. The proposed method combines elements from statistical logistic regression and soft

set decision theory and is applied to real data sets from Chinese listed firms. Xu and Xiao (2016) propose a

new forecasting method to predict business failures that is based on soft set theory. The authors introduce a

new weighted scheme based on the receiver operating characteristic (ROC) curve theory to obtain suitable

weight coefficients for their model. They conclude that their method demonstrates superior performance and

higher stability than other competing methods. Alcantud et al. (2017) propose a new method for valuing

real estate in Spain which is based on fuzzy soft sets. Their proposed method allows them to assess a variety

of assets where data is heterogeneous and at the same time overcome difficulties inherent in more traditional

techniques, such as linear multiple regression.

Harode et al. (2018) construct an optimal investment portfolio that exhibits minimum risk and maxi-

mum returns using fuzzy soft set theory. Xu et al. (2019) propose a hybrid data mining model of generalized

fuzzy soft sets theory-based ensemble credit scoring model. The authors provide evidence that their pro-

posed model can increase computational efficiency without sacrificing classification accuracy. Jacob John

(2021) uses the soft set approach of Kharal (2010) to detect whether two companies with different finan-

cial characteristics suffer from a serious liquidity problem. The first company exhibits rising profit-earnings

ratios during the last fiscal year and a low amount of paid-up capital, whilst the second company exhibits

a very volatile share price and a low profit-earning ratio. The authors have coded the company profiles by

observing their financial indicators into a soft set using appropriate linguistic labels. As a rule of thumb, if a

company’s soft set is similar to a standard liquidity problem profile, it can be deduced that the company suf-

fers from liquidity squeezes. Balcı et al. (2022) introduce network-induced soft sets to study the dynamics

of a financial stock market with several orders of interaction. To achieve the model’s intelligent parameteri-

zation, the authors rely on the bilateral connections between economic agents in a financial network, instead

hybrid approaches include those of Açıkgöz and Tas (2016), Chang et al. (2016), Prasertpong (2021), Ali et al. (2022).
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of using any other single feature of the network itself.

Our work is advantageous compared to previous works. First, we define for the first time the notions of

strong and semi-strong utility. These notions explore the connection between game theory expressed in a

language of soft set theory and “classical” game theory. Second, we present a wide array of game theoretic

solution concepts using soft set theory, extending from normal form games to Nash solutions to bargaining

problems. Third, the methods we develop are straightforward and unambiguous. As a result, one can always

draw an analogy between soft set theory and classical game theory.

This study contributes to the existing literature in a number of ways. First, we define the concept of Nash

Equilibrium (NE) within the framework of soft set theory in a way that is consistent with classical game

theory, pointing out some of the weaknesses in the definition provided by Deli and Çağman (2016a). To

this end, two alternative approaches are considered. In the first approach, we introduce homogeneous player

gains that are obtained via total ordering and rejection of “bads”, i.e. alternatives that enter a player’s gain

tuple and result in the reduction of the gains associated with the strategy chosen. In the second approach, we

introduce the concepts of strong and semi-strong utility, along with a utility correspondence whose image is

the set of all non-negative reals. This novel notion serves as a device that converts non-ordered gains into

totally ordered ones and subsequently computes the game’s NE.

Our second contribution relates to the translation of the Nash equilibrium in mixed strategies (NEMS)

concept into the framework of soft set theory. To achieve this, we depart from a very general setup that

extends the players’ strategy spaces and the game itself which we now call the extended game. The players’

extended strategy spaces are supersets of the original strategy spaces that may contain mixed strategies or

other alternative strategies in addition to the already existing ones. Thus the initial pure strategies game is

now represented by a map from the Cartesian product of the players’ extended strategy spaces to an extension

of the game’s pure strategies power set. For the extended game we also define the players’ best response

correspondences. This work is significant because the extended game is compatible with a wide range of

fixed point theorems, depending on the structure of the extended players’ strategy spaces and the extended

game itself. We provide an example that clarifies this abstract setup. We also provide a less abstract example

for the computation of a game’s NEMS in the language of soft set theory by defining the players’ expected

pay-off functions as vector functions and associate each gain with a standard basis vector of the Euclidean
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4-space.

Finally, we propose an application of soft set theory to cooperative bargaining games in financial markets.

Generally speaking, although our theoretical framework is used to describe how a game is played, and in

particular, describe and explain a number of game theoretic solution concepts and the predictions made with

regard to these concepts, it may also be extremely useful in tackling practical problems in financial markets.

We offer a solution to practical bargaining problems in over-the-counter (OTC) financial markets in which the

price setting mechanism is not revealed to all market participants and the bargaining process is fundamentally

influenced by information asymmetries. Given the complexity of the intermediation process in OTC markets

that raises financial stability concerns, our theoretical approach enables us to model the bargaining process

between buyers and sellers offering solutions to market liquidity improvements. To this end, we discuss a

detailed numerical application in Section 6. We use a market setting similar to that of Duffie et al. (2005)

on intermediation in OTC markets6. From a practical point of view, the primary advantage of our approach

rests in the simplicity of the overall formalism. In particular, in Duffie et al. (2005) the bid, ask, bid-ask

spread, and the asset’s price are being determined by solving a continuous-time, stochastic optimal control

problem. This is only done for the steady state, i.e., for constant masses of all four investor types. Hence,

the analysis carried out revolves around stationary equilibria. In the present setup, this is trivially true as the

optimization problem in Equation (40) is static from the outset. This simplification is the result of the soft set

theoretical approach we take in this study. Given the interdisciplinary nature of game theory, our theoretical

framework may be applicable to other practical problems in international finance where bargaining takes

6Over-the-counter (OTC) financial markets are less formal and standardised than exchange-traded markets. In OTC markets there

are no designated market makers, and dealers usually act informally as market makers by quoting bid and ask prices to other dealers

and to their customers. Regardless of the type of negotiation (customer-to-dealer or dealer-to-dealer), bilateral trading takes place

in OTC markets and the price setting mechanism is not revealed to all participants (a discussion is provided by Dodd, 2017). OTC

markets are also less transparent than exchange-traded markets and subject to fewer regulations. This can negatively affect liquidity in

those markets, especially during periods of market stress such as those of the 2007/08 U.S. subprime mortgage crisis and the 2009/12

euro-area sovereign debt crisis, as liquidity dry-ups may force dealers to exit the market with severe consequences for trading, price

discovery (Hasbrouck, 1995; Werner and Kleidon, 1996; Baillie et al., 2002; Eun and Sabherwal, 2003; Brandt and Kavajecz, 2004;

Mizrach and Neely, 2008), and contagion risk (Allen and Gale, 2000; Forbes and Rigobon, 2002; Vayanos, 2004; Baur and Lucey, 2009;

Beber et al., 2009; Longstaff, 2010; Papavassiliou, 2014; Claeys and Vašı́ček, 2014; De Santis, 2014; Blatt et al., 2015; O’Sullivan

and Papavassiliou, 2019). Unlike in organised exchanges, there are no central clearing and settlement mechanisms in place for OTC

markets and thus transactions are not guaranteed by an exchange, leading to substantial counterparty risk. In recent years, there has

been a substantial increase in OTC derivatives transactions that was made possible due to advances in computer technology. A recent

report by the Bank for International Settlements (BIS) reveals that the gross market value of all contracts in global OTC derivates

markets in the second half of 2021 reached 12.44 billions of U.S. dollars, while the notional amounts outstanding for the same period

reached almost 610 billions of U.S. dollars (Source: BIS Statistics Explorer (http://stats.bis.org/statx/).
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place, such as mergers and acquisitions under financial constraints and corporate negotiations that involve

contingent payments or securities (Chaves and Varas, 2021).

Duffie et al. (2005) propose a dynamic asset-pricing model that captures features of the bargaining pro-

cess that takes place in OTC decentralised markets. The authors derive the equilibrium allocations and prices

negotiated between investors and demonstrate how these equilibrium relationships depend on investors’ bar-

gaining powers and search abilities. Although OTC markets are characterized by the absence of an organized

exchange, there can exist market intermediaries that facilitate trading of financial assets. In that sense, an

OTC market is not necessarily a frictionless market, as there are transaction costs in the form of bid-ask

spreads that must be borne by investors.

Cooperative bargaining games are very relevant to price building in OTC financial markets. As Duffie

et al. (2005) explain, when counterparties meet, their relationship is inherently strategic and prices are

determined through a bargaining process that reflects each investor’s or marketmaker’s alternatives to trade.

In financial OTC markets, investors bargain over the prices at which they are willing to buy or sell assets.

If an asset owner has private information about the asset’s quality and liquidity condition, they may be

incentivised to hide their motives to sell in an attempt to get a more favorable price. Thus, the bargained

price may be influenced by such incentives due to the existence of information asymmetries (Kim, 2019). In

such negotiations there can be significant bargaining delays that extend from a few minutes, for very liquid

securities such as short-term bonds, to months, as in the real estate market (Tsoy, 2016). In recent studies

it has become apparent that the intermediation process in OTC markets is not so straightforward as dealers

are heterogeneous with respect to their typical positions, the frequency with which they trade, and the prices

at which they transact, which further affects the price building process in those markets (Hugonnier et al.,

2020).

We offer an elegant solution to the aforementioned bargaining game using soft set theory. Solving such

type of game in this framework implies choosing elements in the players’ upper sets, such that their union is

equal to the game’s universe set. The equilibrium solution of the game need not be unique. If more than one

solution exist, then choosing the optimal solution requires the existence of an ordering relation. Our novel

modeling approach contributes to the cooperative bargaining literature as it offers a different perspective on

intermediation in financial markets, such as foreign exchange, bond, equity, and mortgage-backed securities
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markets. We explicitly model transaction costs in the form of bid-ask spreads that are present in these

markets and demonstrate how they become narrower, i.e. market liquidity is enhanced, when investors can

find each other more easily. Our findings can have important implications for regulators and policymakers

who design and implement reforms in trading systems with the aim to improve market liquidity. Given

that game theory is used in many fields such as economics, finance, political science, and psychology, the

findings of this research can be used as an interdisciplinary benchmark that stretches beyond the boundaries

of a single research field.

One might ask why soft sets are useful to economic and game theorists. Why should one invest time and

effort in a new tool or ”technology”? The answer to this question is that soft set theory offers solutions to

games in which the assumptions of ”classical” game theory, such as compactness, convexity, and continuity

are not fulfilled. For example, this is the case in discrete games where functions are defined on grids instead

of continuous sets. This leads to useful directions in the development of a general theory and its applications.

The rest of the paper is organized as follows. Section 2 presents the basic definitions of soft set theory.

Section 3 introduces the concept of Nash equilibrium with homogeneous gains obtained by total ordering

and rejection of non-desirable alternatives. Section 4 introduces the concepts of strong utility, semi-strong

utility and an associated utility correspondence. Section 5 discusses Nash equilibrium in mixed strategies.

Section 6 discusses the Nash bargaining solution using soft set theory, presents an application of soft set

theory to cooperative bargaining games, and describes a detailed numerical example from an OTC market.

Section 7 concludes the paper.

2. Preliminaries

In this section, we present the basic definitions of soft set theory that are useful for subsequent discussions.

Let U be an initial universe set and let E be a set of parameters. According to Molodtsov (1999), a soft set

is defined as follows:

DEFINITION 1. A pair (F, E) is called a soft set (over U) if and only if F is a mapping of E into the set

of all subsets of the set U, i.e. F : E → P (U), where P (U) is the power set of U.

That is, the soft set is a parametrized family of subsets of the set U. Every set F (ε), ε ∈ E, may be

considered as the set of ε-elements of the soft set (F, E), or as the set of ε-approximate elements of the
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soft set. Stated differently, we can consider a universe set X, and the power set of X denoted by 2X that

define a map F : A → 2X , where A is the set of parameters defined in the problem at hand. Then we

call the pair (F, A) a soft set over X. Using this definition, a soft set can effectively describe a complex

financial problem by defining a universe set of possible outcomes, for instance X = {c1, c2, c3, c4, c5}, a set of

parameters such as A = {high market risk; low market risk; high systemic risk; low systemic risk}, and a

mapping F : A → 2X which maps each element of the set A to some subset of the universe set X. The

various sets that form the outputs of F are arbitrarily chosen thus they may be empty or have a non-empty

intersection.

Molodtsov (1999) offers an approach to construct a new mathematical tool which can be applied to

problems with game theory. If P ⊂ S , then Fi (P, ε) is a set of ε-optimal situations for player i, where P is a

subset of admissible strategies, ε is a parameter, ε ∈ Ei, and S is a set of situations, S = S 1 × ... × S n, with

S i being a set of strategies of player i. This game is a soft game with the following notation:

〈(

Fi, Ei

)

, S i, i = 1, ..., n
〉

(1)

where
(

Fi,Ei

)

: M (S ) → S , (Fi, Ei), and where M (S ) denotes a set of all subsets of the set S . The

analogue of the Nash equilibrium takes the following form:

DEFINITION 2. Situation s ∈ S is called a situation of soft ε-equilibrium, ε = (ε1, ..., εn), εi ∈ Ei, if and

only if s ∈ Fi (s1 × ... × si−1 × S i × si+1 × ... × sn, εi), for every i = 1, ..., n. Denoting the set of all situations

of soft ε-equilibrium by N (ε), we can call the soft set

(N, E1 × ... × En) , (2)

a soft equilibrium. Although Definition 2 may seem daunting at first glance, it is solely based on the

notion of the set Fi (P, ε), with P ⊂ S , as described earlier. Given a parameter ε, the set Fi (P, ε) as described

above, is the set of all optimal strategies or situations for each player i. Hence, when a strategy s belongs to

this set and is true for all players, then this strategy has to be optimal and thus constitutes a Nash equilibrium

in this set-up.
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3. Nash equilibrium (NE) using soft sets: Homogenization of gains via total ordering and no “bads”

If we consider a two-player game and define S i, i ∈ N, 1 ≤ i ≤ 2, to be the strategy space of player i,

then a normal form game for player i ∈ {1, 2} in the framework of soft set theory is a pair (Fi, S ), where

S ≔S 1 × S 2 is the Cartesian product of the strategy spaces S 1, S 2 and Fi : S → 2U is a map from

S to the power set 2U , where U is the universe set containing all possible alternatives for each player in

the game. If, for example, the strategy space of players 1 and 2 consists of two strategies, s1, s2 and the

universe set of all possible alternatives is U = {u1, u2, u3, u4}, then S is the set S 1 × S 2 = {s1, s2} × {s1, s2} =

{(s1, s1) , (s1, s2) , (s2, s1) , (s2, s2)} and Fi : S → 2U is a mapping which maps each element in S 1 × S 2 to

one of the 24 = 16 elements contained in the power set 2U .

Contrary to the work in Deli and Çağman (2016a), in this study we make the assumption that player

gains are totally ordered. This assumption allows us to treat sets as real numbers for which the completeness

property holds. Hence it enables us to decide unambiguously which gain set is preferred by each player

individually. Along these lines, we introduce a second assumption later in the paper.

Consider a game with two players named 1 and 2. The strategy space of both player 1 and player 2 is

the set S 1 = S 2 = {s1, s2}. The universe set of gain alternatives is U = {u1, u2, u3, u4}. Player’s 1 soft set is

the pair:

(

F1 : {(s1, s1) , (s1, s2) , (s2, s1) , (s2, s2)} → 2{u1,u2,u3,u4}, {(s1, s1) , (s1, s2) , (s2, s1) , (s2, s2)}
)

(3)

We assume that the map F1 : {(s1, s1) , (s1, s2) , (s2, s1) , (s2, s2)} → 2{u1,u2,u3,u4} is the following:

{

F1 (s1, s1) = {u1} , F1 (s1, s2) = {u1, u2} , F1 (s2, s1) = {u1, u2, u3} , F1 (s2, s2) = {u1, u2, u3, u4}
}

(4)

Player’s 2 soft set is the pair:

(

F2 : {(s1, s1) , (s1, s2) , (s2, s1) , (s2, s2)} → 2{u1,u2,u3,u4}, {(s1, s1) , (s1, s2) , (s2, s1) , (s2, s2)}
)

(5)

We assume that the map F2 : {(s1, s1) , (s1, s2) , (s2, s1) , (s2, s2)} → 2{u1,u2,u3,u4} for player 2 is the follow-
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ing:

{

F2 (s1, s1) = {u1, u3} , F2 (s1, s2) = {u1, u2, u3} , F2 (s2, s1) = {u1} , F2 (s2, s2) = {u1, u2, u3, u4}
}

(6)

Player’s 1 gains are totally ordered in the length-4 chain

{u1} ⊆ {u1, u2} ⊆ {u1, u2, u3} ⊆ {u1, u2, u3, u4} (7)

Similarly, player’s 2 gains are totally ordered in the length-4 chain

{u1} ⊆ {u1, u3} ⊆ {u1, u2, u3} ⊆ {u1, u2, u3, u4} (8)

Computing the Nash equilibrium (NE) in this case is quite straightforward. Indeed, if player 1 thinks that

player 2 will choose strategy s1, then the best response for 1 is to choose s2, since {u1, u2, u3} ⊇ {u1}. If player

1 thinks player 2 will choose s2, then her best response is to choose s2 as well, since {u1, u2, u3, u4} ⊇ {u1, u2}.

Hence, player 1 always chooses strategy s2. Similarly, if player 2 thinks player 1 will choose strategy s1,

then her best response is strategy s2 since {u1, u2, u3} ⊇ {u1, u3}. If player 2 believes player 1 will choose s2,

then player’s 2 best response is to choose s2 as well, since {u1, u2, u3, u4} ⊇ {u1}. Hence both players 1 and 2

always choose strategy s2. Therefore, the combination of strategies (s1, s2) ∈ S 1 × S 2 = {s1, s2} × {s1, s2} =

{(s1, s1) , (s1, s2) , (s2, s1) , (s2, s2)} is the NE in pure strategies.

However, an additional assumption must be satisfied. In particular, it must be the case that no elements

contained in the universe set are bad, i.e. non-desirable. This assumption is not met in Deli and Çağman

(2016a). A bad is any alternative that reduces a player’s gain and as such is non-desirable by the player.

Formally, an alternative u j ∈ U is defined as bad for player i ∈ N if and only if, gain X ⊂ U is preferred over
{

u j

}

∪ X.

If the assumption of no bads is not satisfied, then {u1, u2, u3} ⊇ {u1, u3} is not sufficient for a player to

choose {u1, u2, u3} over {u1, u3}. If the alternative prize u2 is bad, then {u1, u2, u3} ⊇ {u1, u3} but the player

will choose the alternative {u1, u3} over {u1, u2, u3}. It follows that lack of total ordering of alternatives leads

10



to ambiguities as arbitrary alternatives must be compared in order to compute the NE of the game. For

example, it is not possible to identify which of the two alternatives {u1} and {u2} a player will choose, given

the fact that these alternatives are neither ordered nor bad. In the following section we introduce the notions

of strong and semi-strong utility as a device that converts initially non-totally ordered alternatives into totally

ordered ones. In doing so, computing a game’s NE becomes feasible.

4. Strong and semi-strong utility

The goal of this section is to explore the connection between game theory expressed in a language of soft

set theory and classical game theory. To this end, we initiate a mapping of the type 2U w
−→ R≥0, where

R≥0 ≔{x ∈ R : x ≥ 0} is the set of all non-negative real numbers. The power set 2U is the set of all alternative

gains and w is a correspondence that maps gains to non-negative reals. This correspondence reveals how a

particular player perceives each gain tuple, i.e. each subset of the universe set, U. Such correspondence is

always monotone in relation to the inclusion operation of sets or subsets of U. Hence 2U w
−→ R≥0 may, under

certain conditions on preferences, have very strong properties making it additive or monotone. These types

of utilities are described next.

DEFINITION 3. For any A, B ⊆ U, strong utility is defined by the property w (A ∪ B) = w (A) + w (B)

when A ∩ B = ∅.

THEOREM 1. Let U be the set of all alternatives in a game, w : 2U → R≥0 be a utility map from the

power set of U to the set of all non-negative real numbers R≥0, and A, B ⊆ U. If utility w is strong, the utility

w (A) , A ∈ 2U , is produced from the utility of the singleton sets, i.e. w (A) =
∑

αi∈A
w ({αi}) , w (∅) = 0.

Theorem 1 allows us to order totally, just like real numbers, the various gains that result from the choice

of players’ strategies when these gains are completely arbitrary and thus non-comparable between them. In

particular, Theorem 1 states that the utility obtained by each player from each alternative gain is the sum

of utilities of the singleton sets that make up each gain tuple. Hence, once we know the utility a player

derives from each singleton set, we can obtain the utility of every gain tuple. A detailed numerical example

is provided after Theorem 2 and an additional short numerical example is presented in Remark 1 of the

Appendix.
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DEFINITION 4. (Semi-strong utility) For any A, B ⊆ U , semi-strong utility is defined by the property

A ⊆ B which implies w (B) ≥ w (A). Hence semi-strong utility is monotone.

THEOREM 2. Strong utility, w, is semi-strong, i.e. monotone if w
(

2U
)

⊂ R≥0. The condition w
(

2U
)

⊂

R≥0 essentially states that in order for the monotonicity property which characterizes semi-strong utility to

hold, the utility of each gain tuple, i.e., the utility of each element that belongs to the power set 2U must be

non-negative.

Consider a game with two players,1 and 2. The strategy space of both player 1 and player 2 is the set

S 1 = S 2 = {s1, s2}. The universe set of gain alternatives is: U = {u1, u2, u3, u4}. Player’s 1 soft set is the pair:

(

F1 : {(s1, s1) , (s1, s2) , (s2, s1) , (s2, s2)} → 2{u1,u2,u3,u4}, {(s1, s1) , (s1, s2) , (s2, s1) , (s2, s2)}
)

(9)

We assume that the map F1 : {(s1, s1) , (s1, s2) , (s2, s1) , (s2, s2)} → 2{u1,u2,u3,u4} is the following:

{

F1 (s1, s1) = {u1} , F1 (s1, s2) = {u2} , F1 (s2, s1) = {u2, u3} , F1 (s2, s2) = {u4}
}

(10)

Player’s 2 soft set is the pair:

(

F2 : {(s1, s1) , (s1, s2) , (s2, s1) , (s2, s2)} → 2{u1,u2,u3,u4}, {(s1, s1) , (s1, s2) , (s2, s1) , (s2, s2)}
)

(11)

We assume that the map F2 : {(s1, s1) , (s1, s2) , (s2, s1) , (s2, s2)} → 2{u1,u2,u3,u4} for player 2 is the follow-

ing:

{

F2 (s1, s1) = {u1, u2} , F2 (s1, s2) = {u1, u3} , F2 (s2, s1) = {u3} , F2 (s2, s2) = {u4}
}

(12)

The alternative gains in this game are obviously non-totally ordered. We will use the concept of strong

utility in order to compute the NE of the game. Let w : 2U → R≥0 be the utility map from the power set

2{u1,u2,u3,u4} to the closed interval [0,+∞) ≔ R≥0, such that w ({u1}) = 2, w ({u2}) = 7, w ({u3}) = 3, and

w ({u4}) = 1. It follows from Theorem 1 that: w ({u2, u3}) = 10, w ({u1, u3}) = 5, and w ({u1, u2}) = 9.

The NE of the game is the combination of strategies (s2, s1). Gains are now totally ordered in the length-5

chains:
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∅ < {u4} < {u1} < {u2} < {u2, u3} (13)

and

∅ < {u4} < {u3} < {u1, u3} < {u1, u2} (14)

for players 1 and 2, respectively. Hence a game with non-totally ordered gains has now been transformed

into a game with totally ordered gains, for which the NE was found to be (s2, s1).

One might wonder why the difference between strong and semi-strong utility matters in real-life cases.

Strong utility allows players, such as market participants, to rank all outcomes that result from the strategy

they choose and pick the one for which their gain is maximized. The result of this process, carried out by

each player, is the game’s Nash equilibrium. However, the gain obtained from choosing a strategy can be

either greater or smaller than the sum of gains that correspond to each element in the relevant gain set. For

example, the utility enjoyed by a consumer who consumes products X and Y simultaneously, may be smaller

than the sum utility she would have enjoyed, had she consumed these two products separately. To draw an

analogy with finance, the gain of an investor who chooses to invest in a portfolio of stocks may be greater

or smaller than the sum of gains the investor would have received, had she invested in each stock separately.

That’s the idea captured by semi-strong utility.

5. Nash equilibrium in mixed strategies (NEMS)

The approach of classical game theory to prove the existence of a Nash equilibrium rests on a set of ideal

assumptions. In particular, to prove existence, one must show that the best response correspondence BR :

S →→ S is closed and convex-valued, where the strategy space S is a nonempty, compact, and convex

subset of a finite dimensional normed linear space. Then, by Kakutani’s (1941) fixed point theorem, the best

response correspondence BR : S →→ S has a fixed point s ∈ S such that s ∈ BR (s).

The approach of classical game theory has two drawbacks. First, it lacks realism in the following sense:

Consider a game with two players, 1 and 2. The best response correspondence of player 1 is BR1 : [0, 1]→→

[0, 1] and similarly for player 2, BR2 : [0, 1] →→ [0, 1]. This implies that player 1 has the cognitive ability
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to calculate her best response for all probabilities contained in the uncountably infinite set [0, 1] with which

player 2 plays her strategy. The same holds for player 2. This is very unlikely to be the case in practice.

The second drawback of classical game theory is that it has fewer degrees of freedom compared to the

approach of soft set theory. For example, it can only deal with continuous maps defined on convex and

compact sets. It does not work for set-valued correspondences defined on discrete sets for which the notion

of continuity needs redefinition given that it is not meaningful for such sets, and the usual compact and

convex sets must be replaced by a discrete set. To define a Nash equilibrium in such a case, one must make

use of a discrete fixed point theorem such as the Iimura et al. (2005) theorem, Yang’s (2009) theorem, or

Tarski’s (1955) lattice fixed point theorem.

To describe NEMS in an abstract manner one needs to extend the strategy space S 1 of player 1 to a

superset S 1 ⊃ S 1 and similarly extend player 2’s strategy space S 2 to a superset S 2 ⊃ S 2. The sets S 1

and S 2 may contain mixed or other strategies in addition to those contained in the sets S 1 and S 2. In the

pure strategy game G, in the language of soft set theory, one has a map S 1 × S 2 → 2U . Game G can be

extended to include mixed or other alternative strategies. This generates the extended game G which is a map

S 1 × S 2 → 2U , where the set 2U extends the power set 2U . The set 2U contains mixed gains or further gains

than those contained in 2U and it is ordered either as a lattice or a chain. The restriction of the extended game

G on the Cartesian product S 1 × S 2 is the initial pure strategies game. In the extended game G, player 1’s

best response correspondence is BR1 (s2) : S 2 →→ S 1 with BR1 (s2) = arg max
s1∈S 1

G (s1, s2). Players 2’s best

response correspondence is BR2 (s1) : S 1 →→ S 2 with BR2 (s1) = arg max
s2∈S 2

G (s1, s2). The solution to G is

a pair
(

s∗
1
, s∗

2

)

∈ S 1 × S 2 with s∗
1
∈ BR1

(

s∗
2

)

and s∗
2
∈ BR2

(

s∗
1

)

. This generalized approach can accommodate

various fixed point theorems depending on the structure of the strategy spaces and the extension G.

We give an example for clarification purposes by extending a game with no NEMS to a game with

NEMS. Consider the following game, in soft set theoretic form, in which there are two players, 1 and 2, with

strategy spaces S 1 = S 2 = {s1, s2}. The universe set of alternative gains is U = {u1, u2, u3, u4}. Player 1’s

soft set is the pair:

(

F1 : {(s1, s1) , (s1, s2) , (s2, s1) , (s2, s2)} → 2{u1,u2,u3,u4}, {(s1, s1) , (s1, s2) , (s2, s1) , (s2, s2)}
)

(15)
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for which the map F1 : {(s1, s1) , (s1, s2) , (s2, s1) , (s2, s2)} → 2{u1,u2,u3,u4} is the following:

{

F1 (s1, s1) = {u2} , F1 (s1, s2) = {u1, u2} , F1 (s2, s1) = {u1, u2, u3} , F1 (s2, s2) = {u2}
}

(16)

Player 2’s soft set is the pair:

(

F2 : {(s1, s1) , (s1, s2) , (s2, s1) , (s2, s2)} → 2{u1,u2,u3,u4}, {(s1, s1) , (s1, s2) , (s2, s1) , (s2, s2)}
)

(17)

for which the map F2 : {(s1, s1) , (s1, s2) , (s2, s1) , (s2, s2)} → 2{u1,u2,u3,u4} is the following:

{

F2 (s1, s1) = {u1, u2} , F2 (s1, s2) = {u3} , F2 (s2, s1) = {u1} , F2 (s2, s2) = {u2}
}

(18)

The above game has no NEMS. We extend player 2’s strategy space to the extended strategy space S 2 =

{s1, s2, s3} ⊃ S 2, where s3 := 1
2

s1 +
1
2

s2. Then, the map F1 : {(s1, s1) , (s1, s2) , (s2, s1) , (s2, s2)} → 2{u1,u2,u3,u4}

changes to the extended map:

F1 : {(s1, s1) , (s1, s2) , (s2, s1) , (s2, s2) , (s1, s3) , (s2, s3)} → 2{u1,u2,u3,u4} ∪ 2{u1,u2,u3,u4}×{ 1
2 } (19)

where

{F1 (s1, s1) = {u2} , F1 (s1, s2) = {u1, u2} , F1 (s2, s1) = {u1, u2, u3} , F1 (s2, s2) = {u2} ,

F1 (s1, s3) =
1

2
{u2} ∪

1

2
{u1, u2} , F1 (s2, s3) =

1

2
{u1, u2, u3} ∪

1

2
{u2}} (20)

Similarly, for player 2 we have precisely the same general form of the extended map as in Equation (19),

where
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{F2 (s1, s1) = {u1, u2} , F2 (s1, s2) = {u3} , F2 (s2, s1) = {u1} , F2 (s2, s2) = {u2} ,

F2 (s1, s3) =
1

2
{u1, u2} ∪

1

2
{u3} , F2 (s2, s3) =

1

2
{u1} ∪

1

2
{u2}} (21)

By extending the ordering of the extended gain space such that {u1} , {u2} <
1
2
{u1} ∪

1
2
{u2}, the strategy

combination (s2, s3) is a NEMS of the extended game.

In classical game theory, a Nash equilibrium in mixed strategies (NEMS) is a probability distribution

assigned to each player’s strategies such that, each player is indifferent between her pure strategies as they

yield the same von Neumann-Morgenstern pay-off. We consider the two player game described in Equations

(3)–(6). The strategy space for players 1 and 2 is the set S 1 = S 2 = {s1, s2} and the universe set of gain

alternatives is U = {u1, u2, u3, u4}. In contrast to Deli and Çağman (2016a), each player’s gains in this

example are totally ordered. In particular, for player 1 we have the length-4 chain as described in Equation

(7), and similarly for player 2 we have the length-4 chain described in Equation (8), similar to real numbers in

classical game theory for which the completeness property is satisfied. This makes the comparison between

each player’s gains clear and unambiguous. For example, it would be impossible to decide which of the

two sets {u1, u3} and {u2, u4} is better for a player, given the completely arbitrary nature of u1, u2, u3, and

u4, unless these sets are ordered. From the soft set representation of the game in Equations (3)-(6), we note

that F1 (s1, s1) = {u1}, F1 (s1, s2) =
{

u1,u2

}

, F1 (s2, s1) = {u1, u2, u3}, and F1 (s2, s2) = {u1, u2, u3, u4} and

F2 (s1, s1) = {u1, u3}, F2 (s1, s2) = {u1, u2, u3}, F2 (s2, s1) = {u1}, F2 (s2, s2) = {u1, u2, u3, u4}. Given that the

two players’ pay-offs are totally ordered, the computation of the NEMS was easily found to be the pair of

strategies (s1, s2). If no ordering relation exists between arbitrary pay-offs, then even for a simple 2×2 game

the computation of the NEMS would not be possible unless we associate a number to each gain, in which

case we are back to classical game theory (or use the notions of strong and semi-strong utility of Section 4).

We shall now provide a second approach to the computation of the NEMS which is less abstract

compared to that presented at the beginning of the current Section. We know that if σ1 (s1) ≥ 0 and

σ1 (s2) ≥ 0 stand for the probabilities with which player 1 plays strategies s1 and s2, respectively,

16



where σ1 (s1) + σ1 (s2) = 1, then a mixed strategy for player 1 is given by the probability distribution
{

(s1, σ1 (s1)) , (s2, σ1 (s2))
}

. Similarly, if σ2 (s1) and σ2 (s2) stand for the probabilities with which player

2 plays strategies s1 and s2, respectively, where σ2 (s1) + σ2 (s2) = 1, then a mixed strategy for player 2 is

given by the probability distribution
{

(s1, σ2 (s1)) , (s2, σ2 (s2))
}

.

Since the selection of strategies between players 1 and 2 happens independently, it follows from the defi-

nition of statistical independence that the probability with which players 1 and 2 will jointly choose strategy

s1 is equal to the product of their respective probabilities, i.e. σ1 (s1)σ2 (s1). Similarly, the probability that

player 1 will choose strategy s1 and player 2 will choose strategy s2 is equal to the product of their respective

probabilities σ1 (s1)σ2 (s2). With this in mind, the expected gain of player 1, denoted by π1, is equal to:

π1 = σ1 (s1)σ2 (s1) {u1} + σ1 (s1)σ2 (s2) {u1, u2} + σ1 (s2)σ2 (s1) {u1, u2, u3} + σ1 (s2)σ2 (s2) {u1, u2, u3, u4}

(22)

In the same manner, the expected gain of player 2, π2, is equal to:

π2 = σ1 (s1)σ2 (s1) {u1, u3} + σ1 (s1)σ2 (s2) {u1, u2, u3} + σ1 (s2)σ2 (s1) {u1} + σ1 (s2)σ2 (s2) {u1, u2, u3, u4}

(23)

To draw an analogy with classical game theory and the concept of NEMS, we recognize each prize

u1, u2, u3, and u4 contained in the universe set U = {u1, u2, u3, u4} as a vector in the standard basis for

R
4. Hence we recognize u1 as being the vector u1 ≔〈1, 0, 0, 0〉, u2 as being the vector u2 ≔〈0, 1, 0, 0〉,

and similarly for u3 and u4: u3 ≔〈0, 0, 1, 0〉 and u4 ≔〈0, 0, 0, 1〉. Player’s 1 gains {u1, u2}, {u1, u2, u3}, and

{u1, u2, u3, u4} are equal to the unions
⋃2

i=1 {ui},
⋃3

i=1 {ui}, and
⋃4

i=1 {ui}, respectively. Identifying the union

with addition to each strategy we can show that {u1, u2} is equal to
⋃2

i=1 {ui} = 〈1, 0, 0, 0〉 + 〈0, 1, 0, 0〉 =

〈1, 1, 0, 0〉, {u1, u2, u3} is equal to
⋃3

i=1 {ui} = 〈1, 0, 0, 0〉 + 〈0, 1, 0, 0〉 + 〈0, 0, 1, 0〉 = 〈1, 1, 1, 0〉, and gain

{u1, u2, u3, u4} is the vector
⋃4

i=1 {ui} = 〈1, 0, 0, 0〉 + 〈0, 1, 0, 0〉 + 〈0, 0, 1, 0〉 + 〈0, 0, 0, 1〉 = 〈1, 1, 1, 1〉 with all

entries equal to 1.

Similarly, for player 2 the gain {u1, u3} is the union {u1} ∪ {u3} or the vector 〈1, 0, 0, 0〉 + 〈0, 0, 1, 0〉 =
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〈1, 0, 1, 0〉. Hence the expected gain of player 1, π1, becomes:

π1 = σ1 (s1)σ2 (s1) 〈1, 0, 0, 0〉 + σ1 (s1)σ2 (s2) 〈1, 1, 0, 0〉+

σ1 (s2)σ2 (s1) 〈1, 1, 1, 0〉 + σ1 (s2)σ2 (s2) 〈1, 1, 1, 1〉

or

π1 = 〈1, σ1 (s1)σ2 (s2) + σ1 (s2) , σ1 (s2) , σ1 (s2)σ2 (s2)〉 (24)

The expected gain for player 2 computed in the same manner is given by the expression:

π2 = σ1 (s1)σ2 (s1) 〈1, 0, 1, 0〉 + σ1 (s1)σ2 (s2) 〈1, 1, 1, 0〉+

σ1 (s2)σ2 (s1) 〈1, 0, 0, 0〉 + σ1 (s2)σ2 (s2) 〈1, 1, 1, 1〉

or

π2 = 〈1, σ2 (s2) , σ1 (s1) + σ1 (s2)σ2 (s2) , σ1 (s2)σ2 (s2)〉 (25)

We define the Nash equilibrium in mixed strategies as the probabilistic mix

(

(

σ∗1 (s1) , σ∗1 (s2)
)

,
(

σ∗2 (s1) , σ∗2 (s2)
)

)

(26)

which maximizes simultaneously the convex combination of the elements in the expected gain vectors

π1 and π2 of players 1 and 2, respectively. Hence the Nash equilibrium in mixed strategies corresponds to

the solution of the following two maximization problems:

max
σ1(s1)

w1 + w2 (σ1 (s1)σ2 (s2) + σ1 (s2)) + w3σ1 (s2) + w4σ1 (s2)σ2 (s2) (27)
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and

max
σ2(s1)
θ1 + θ2σ2 (s2) + θ3 (σ1 (s1) + σ1 (s2)σ2 (s2)) + θ4σ1 (s2)σ2 (s2) (28)

such that

wi ≥ 0, θi ≥ 0, i = 1, 2, 3, 4, w1 + w2 + w3 + w4 = 1, and θ1 + θ2 + θ3 + θ4 = 1.

6. Cooperative bargaining games

This section discusses cooperative bargaining games using soft set theory. Section 6.1 describes the Nash

bargaining solution offering a different perspective based on soft set theory. Section 6.2 presents an ap-

plication to bargaining in over-the-counter financial markets. Section 6.3 offers a numerical example of a

dynamic search-and-bargaining game in over-the-counter financial markets, motivated by the work of Duffie

et al. (2005).

6.1. The Nash bargaining solution

In cooperative bargaining games the outcomes are binding by definition. An example of a cooperative bar-

gaining game is the wage setting between a labor union and an employer. The outcome of this game is

a legally binding contract between the two players. Von Neumann and Morgenstern (1944) defined the

bargaining set as the set of all individually rational and Pareto-efficient pairs 7. The outcome of the bar-

gaining will lie within this set. By introducing the axioms of symmetry, invariance to equivalent utility

7The impact of the works of John von Neumann and Oskar Morgenstern on the scientific community and the further development

of social sciences has been tremendous. Their theoretical contributions were too mathematical for economists, thus game theory was

developed almost entirely by mathematicians of that period. As Hanappi (2013) explains, since von Neumann and Morgenstern’s

pioneering contributions, game theory has had a mixed fate, with periods of ignorance and research inactivity changing with periods

of redirection towards new fields of interest. Significant subsequent contributions to von Neumann and Morgenstern’s cooperative

theory include those of Nash (1950,1951,1953) and Shapley (1953) who laid the groundwork for non-cooperative theory, cooperative

bargaining theory, and the theory of stochastic games. Kuhn (1950) introduced the concepts of behavior strategies while Albert Tucker

set the stage for the further development of the interplay between competition and cooperation. Nevertheless, other scientific fields were

also influenced by von Neumann-Morgenstern. Shannon and Weaver’s (1949) work on cryptographic military methods was massively

influenced by von Neumann and Morgenstern’s work, introducing an engineering perspective in game theoretical problems. Wiener

(1948, 1954) proposed to look into “black boxes”, a term used to refer to processes with a rigid engineering attitude, to turn them

into “white boxes”, i.e. the explicit statement of a full-fledged equation system or program, as per von Neumann and Morgenstern. A

number of influential ideas on how order can emerge out of randomness, such as those of Prigogine (1984) and Kaufman (1993) were

also influenced by the early contributions of von Neumann and Morgenstern. Prigogine’s (1984) contribution was in chemistry and

showed that living systems are characterized by processes that deviate from thermodynamic equilibrium. Another contribution came

from biology (Maynard-Smith, 1982, 1988) with researchers inspired by game-theoretic modelling techniques that enabled them to

depart from standard mathematical solutions. Computer science was also influenced by von Neumann and Morgenstern which led to
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representations, and independence of irrelevant alternatives (IIA), Nash (1950) derived the Nash bargain-

ing solution as the point (x, y) in the bargaining set, which yields the maximum value of the Nash product

[u (x) − u (d)]
[

v (y) − v (d)
]

subject to the constraint x + y = 1, where u and v are the two players’ utility

functions, and the real numbers u(d) and v(d) are their respective utilities in the event that no agreement is

reached.8 The constraint x+ y = 1 indicates that the sum of the shares received by the two players must sum

up to 1, i.e. the entire prize of the bargaining process.

Let U denote the universe set containing all possible alternatives for each player in a cooperative bar-

gaining game. In a soft set theory setting, the players’ gains in the event of no agreement correspond to one

or more elements in the power set 2U . As an example, let U = {u1, u2, u3, u4} and let the sets P1 = {u2}

and P2 = {u1, u3} represent player’s 1 and 2 minimally required gains. It follows that player 1 and player 2

will walk off from the bargaining process for anything less. The upper set of P1 is defined as the set whose

elements are the supersets of P1. Similarly, for the upper set of P2. Hence in this example, the upper set of

P1 is defined as the set:

C1 :=
{

{u2} , {u1, u2} , {u2, u3} , {u2, u4} , {u1, u2, u3} , {u1, u2, u4} , {u2, u3, u4} , {u1, u2, u3, u4}
}

(29)

while the upper set of P2 is defined as the set

C2 :=
{

{u1, u3} , {u1, u2, u3} , {u1, u2, u3, u4}
}

(30)

If A1 and A2 are elements of C1 and C2, respectively, the Nash bargaining solution is defined as the

union A1 ∪ A2, such that A1 ∪ A2 = U. Hence the Nash bargaining solution within the framework of soft

set theory consists of the elements in the players’ upper sets, such that each player receives her optimal gain

and A1 ∪ A2 = U.

This problem may have more than one solution or a unique solution. In any case, the players’ sets

which correspond to their minimally required gains in the event of no agreement, must be disjoint as no

the advancement of evolutionary economics (Nelson and Winter, 1982). For a historical account of the developments in game theory

see Shubik (2011) and Weintraub (1992).
8Nash (1953) extended his previous treatment of the bargaining problem to a wider class of situations in which threats can play a

role in negotiations.

20



two players can gain the same prize simultaneously, unless this alternative has multiplicity greater than one.

Considering U = {u1, u2, u3, u4}, P1 = {u2}, and P2 = {u1, u3} , one solution to the Nash bargaining problem

is A1 = {u2, u4} ∈ C1 and A2 = {u1, u3} ∈ C2, with A1 ∪ A2 = U. The only case the solution is unique is when

A1 and A2 are the minimally required sets by players 1 and 2, respectively, such that their union is the set U.

For example, if P1 and P2 denote the sets {u1, u2} and {u3, u4} satisfying {u1, u2} ∪ {u3, u4} = U, there exists

a unique solution to the bargaining problem.

When more than one solution exist, choosing the optimal solution requires the existence of an ordering

rule. If the axiom of symmetry or anonymity is dropped out, so that the labeling of players matters, we

obtain the generalized Nash bargaining solution which is the point (x, y) in the bargaining set, in which

the weighted utility [u (x) − u (d)]a [v (y) − v (d)
]b

is maximum. This is subject to the constraint condition

x + y = 1, where a and b are measures of the players’ bargaining power usually summing up to 1, reflecting

the relative impatience to conclude the bargaining. In a soft set setting, this is translated as attaching differing

weights on the elements of the universe set U, where each element has different significance level for each

player.

6.2. An application to dynamic search and bargaining in over-the-counter (OTC) markets

Motivated by the work of Duffie et al. (2005) we translate a problem of dynamic search and bargaining

equilibrium in over-the-counter (OTC) markets with competing marketmakers into a soft set theory problem.

In OTC financial markets an investor who wishes to sell a particular asset must search for a buyer (Vayanos

and Wang, 2007; Lagos et al., 2011). This implies opportunity or other costs which, in turn, open the way

for market intermediaries. In such markets, counterparties must act strategically as prices are set through a

bargaining process that reflects each investor’s ability to trade, taking into account inventory and transaction

costs, as well as various trading frictions that arise through bargaining.

Similar to Duffie et al. (2005) we assume that there is no inventory risk among marketmakers because

of the existence of interdealer markets. Interdealer markets allow marketmakers to liquidate their positions

instantly, thus marketmakers have no inventory risk at any time. We also make the assumption that agents in

our model are symmetrically informed. That is, our analysis assumes no market frictions exist in the market-

place, and marketmakers’ bid and ask prices are not explained by microstructure inventory considerations
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(Garman, 1976; Stoll, 1978; Amihud and Mendelson, 1980; Ho and Stoll, 1980, 1981, 1983; Kyle, 1989;

Jankowitsch et al., 2011; Friewald and Nagler, 2019; Colliard et al., 2021) or by adverse selection consider-

ations arising from asymmetric information (Glosten and Milgrom, 1985; Kyle, 1985; Easley and O’Hara,

1987; O’Hara, 1995; Calcagno and Lovo, 2006; Glode and Opp, 2016; Ranaldo and Somogyi, 2021). It

follows that the bid and ask prices are set based on the market participants’ ability to find counterparties to

transact with. It is further assumed that investors are homogeneous with respect to the speed with which

they find counterparties.

Typical examples of OTC markets in which asymmetric information is absent (or limited), include the

foreign exchange market and the interest-rate swaps market. In Duffie et al. (2005) marketmakers compete

with each other for order flow and liquidity and as a result they quote better prices. In fact, they are forced

to do so as investors have the option to shop around in search of better deals. When investors’ search al-

ternatives for suitable counterparties improve, and when marketmakers’ contact intensities become larger,

bid-ask spreads tend to vanish, provided that marketmakers do not possess full bargaining power (a monop-

olistic marketmaker case).

We let time t be discrete, taking values in the countably infinite time set T≔{0, 1, 2, ...}. Investors are

divided into four categories according to an intrinsic type labeled ’high’ (h) or ’low’ (l), and their sta-

tus as owners (o) or not (n) of an asset. Thus the full set of investor types denoted by τ, is defined as

τ≔{ho, hn, lo, ln}. Low-type investors who own an asset bear holding costs, whilst high-type investors do

not bear such costs. We define low-type investors as those with low liquidity, high financing costs, or a tax

disadvantage over high-type investors. In a dynamic search-and-bargaining equilibrium, low-type investors

who own an asset are those who take the sell-side of a transaction, whereas high-type investors who do not

own an asset are those who take the buy-side of the transaction. This is actually the only case a gain from a

transaction may arise, regardless of whether investors have private information about their own type.

Let N be a positive integer. The universe set U (t) = {c1 (t) , ..., cN (t)} consists of N consumption al-

ternatives expressed in monetary terms. As described in the previous section, at each time t, each investor

belonging to each of the four categories chooses a consumption plan from her upper set, such that the union

of all investors’ consumption plans is equal to the universe set U (t). Each investor is assumed to have a

minimally required set of consumption gains. The Nash bargaining equilibrium at time t is a quadruple
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{P (t) , B (t) , A (t) ,M (t)} which consists of the price P (t) negotiated directly between investor groups lo and

hn, the bid price B (t) at which investors sell to marketmakers, the ask price A (t) at which investors buy from

marketmakers, and the interdealer price M (t).

Accordingly, let Pho (t) be the minimally required set of consumption gains for a type ho investor, and

similarly let Phn (t) , Plo (t) , and Pln (t) correspond to the minimally required set of consumption gains for

investor types hn, lo, and ln, respectively. Furthermore, let Cho (t) , Chn (t) , Clo (t), and Cln (t) denote the

respective upper sets for each investor. At time t, each investor belonging to each of the four categories

selects an element from her upper set. The union of all these elements must equal the universe set U (t).

If we denote by S ho (t) , S hn (t) , S lo (t) and S ln (t) the elements in the respective upper sets selected by

each of the four investor types and let numbers A1, A2, A3, and A4 be the sums of the elements contained in

S ho (t) , S hn (t) , S lo (t) and S ln (t), respectively, a Nash (1950) bargaining with a seller bargaining power of

θ ∈ [0, 1] yields:

P (t) = (A3 − A4) (1 − θ) + (A1 − A2) θ (31)

This equation is the analogue of Equation (11) in Duffie et al. (2005) expressed in a language of soft

set theory. Bid and ask prices are determined in a similar way through bargaining between investors and

marketmakers. Marketmakers have a fraction z ∈ [0, 1] of bargaining power when they negotiate with

investors. Hence a marketmaker buys from an investor at the bid price B (t) and sells at the ask price A (t)

determined as:

A (t) = (A1 − A2) z + M (t) (1 − z) (32)

B (t) = (A3 − A4) z + M (t) (1 − z) (33)

Assuming that marketmakers meet more potential buyers than sellers, the interdealer price M (t) is equal

to the ask price A (t), whereas if marketmakers meet more potential sellers than buyers the interdealer price

is equal to the bid price B (t). If the number of potential buyers is equal to that of potential sellers, the
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interdealer price is equal to:

M (t) = q (A1 − A2) + (1 − q) (A3 − A4) (34)

for q ∈ [0, 1] arbitrary. This is the equivalent to the knife-edge case discussed in Duffie et al. (2005).

6.3. Numerical example

Further to the problem of dynamic search and bargaining equilibrium discussed in the previous section, we

provide a numerical example which assumes a competitive Walrasian equilibrium framework, according to

which, investors transact instantly with one another and supply equals demand at every point in time. In such

framework, prices approach the competitive Walrasian prices and bid-ask spreads approach zero as investors

find each other in the marketplace more quickly. Fast intermediation by competing marketmakers also results

in competitive Walrasian prices and zero bid-ask spreads. The following numerical example is not applicable

to the case of a fast monopolistic marketmaker whose intermediation does not lead to competitive Walrasian

prices and narrower bid-ask spreads, but leads to wider bid-ask spreads as intermediation increases.

Let the universe set be U (t) = {100, 150, 180, 50, 80, 280, 130, 120, 70} containing N=9 alternative

consumption plans expressed in monetary terms. Investors who are sellers are assumed to have bargain-

ing power θ = 0.5 and competing marketmakers are assumed to have bargaining power z = 0.2. Let

the minimally required consumption sets contained in the set of investor types τ := {ho, hn, lo, ln}, be

Pho (t) = {100} , Phn (t) = {50} , Plo (t) = {120}, and Pln (t) = {80}, respectively. There still remain five

elements from the universe set U (t) to be distributed to the four investors, i.e. {150, 180, 280, 130, 70}.

In number theory and combinatorics, an integer partition provides a way of writing a positive integer as

a sum of positive integers. The positive integer 5, which corresponds to the number of elements in the set

{150, 180, 280, 130, 70} can be expressed as a sum of positive integers. If the ordering of the summands in

that sum of positive integers is of no importance, the positive integer 5 can be partitioned in seven different

ways, i.e. 5, 4+1, 3+2, 3+1+1, 2+2+1, 2+1+1+1, and 1+1+1+1+1. As we are interested in partitions that

contain four summands corresponding to the number of investor categories, we exclude the last partition.

Using discrete mathematics and combinatorial analysis, the number of ways through which we can partition

a set of n objects into r cells, with n1 ≥ 0 elements of a first kind in the first cell, n2 ≥ 0 elements of a second
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kind in the second cell, and so forth, is given by the multinomial coefficient























n

n1, n2, ..., nr























=
n!

n1! n2!...nr!

where n1 + n2 + ... + nr = n.

Trivially, there is only one way to partition five elements into four cells where three contain no elements

and the fourth contains all five elements. Given that there are four investors, each investor may get all five

elements whilst the rest of investors may get zero. Hence there are four different ways through which the

five consumption gains expressed in monetary terms in the set {150, 180, 280, 130, 70} can be distributed

to the four investors. There are five partitions of {150, 180, 280, 130, 70} into four cells where the first cell

contains four distinct elements, the second cell contains one element, and the remaining two cells are equal,

both containing zero elements. This result is obtained using the multinomial coefficient with n = 5, n1 =

4, n2 = 1, and n3 = n4 = 0:























5

4, 1, 0, 0























= 5!
4!1!0!0!

= 5, with 4 + 1 + 0 + 0 = 5 = n. Using combinatorial

analysis, the number of permutations with n objects of which a are alike, b are alike, and so forth, is n!
a!b!...

.

Hence the number of permutations of the four cells in this case is 4!
2!
= 12, given that there are 2! = 2 cells

which are exactly the same and both contain zero elements. It follows that there are twelve different ways to

distribute this particular partition among the four investors. Given the number of distinct partitions is five,

there are sixty ways to distribute them to the four investors.

Similarly, there exist ten distinct partitions of the set {150, 180, 280, 130, 70} into four cells where the first

cell contains three elements, the second cell contains two elements, and the remaining two cells contain zero

elements each. One can calculate the remaining partitions of this set and the number of ways to distribute

them to the four investors in the same manner. The numbers A1, A2, A3, and A4 in Equations (32)-(34) are

functions of a particular partition each time. This implies that the ask and bid prices are also functions of

that partition. If we denote the partitions by δ, the ask and bid prices are functions, f1 and f2, and take the

general form A = f1 (δ) and B = f2 (δ).

Our objective is to locate a partition which minimizes the bid-ask spread, i.e. it solves the following

mathematical optimization problem:
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min f1 (δ) − f2 (δ)

s.t. δ ∈ ∆ (35)

where ∆ is the set of all partitions. Inserting Equation (34) into Equations (32) and (33), yields Equations

(36) and (37) shown below:

A (t) = {z + q (1 − z)} (A1 − A2) + (1 − q) (1 − z) (A3 − A4) (36)

B (t) = q (1 − z) (A1 − A2) + {z + (1 − q) (1 − z)} (A3 − A4) (37)

Therefore, the spread is given by the following equation:

A (t) − B (t) = z (A1 + A4 − A2 − A3) (38)

For z = 0.2 and q = 0.8, the bid-ask spread is equal to:

A (t) − B (t) = 0.2 (A1 + A4 − A2 − A3) (39)

We solve the following integer linear programming (ILP) problem:

min
A1,A2,A3,A4

(A1 + A4 − A2 − A3)

s.t. A1 + A4 − A2 − A3 ≥ 0 (40)

φ ∈ Φ

where the factor 0.2 can be omitted. The constraint A1 + A4 − A2 − A3 ≥ 0 expresses the condition that

the bid-ask spread is non-negative. The second constraint indicates that the distribution we are searching for

lies within the set Φ of all distributions between the two investor groups.
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The integer linear programming model in Equation (40) is a simplification of the computationally in-

tensive problem in Equation (35). We have split investors into two distinct groups rather than considering

each investor separately. The ILP problem in Equation (40) is equivalent to minimizing the sum A1 +A4 and

maximizing the sum A2 + A3. The two investor types ho and ln start with an initial combined consumption

gain of 100+80=180 which is the sum of their minimally required consumption gains Pho (t) = {100} and

Pln (t) = {80}, respectively. Similarly, the two investor types hn and lo start with an initial combined con-

sumption gain of 50+120=170 which is the sum of their minimally required consumption gains Phn (t) = {50}

and Plo (t) = {120}, respectively. It follows that the number of ways of selecting two consumption gains

out of five is equal to the number of combinations of five distinct objects taken two at a time, that is,

5
C2 =























5

2























= 10. One way to achieve this is to assign to the first group, which is comprised of the two

investor types ho and ln, the consumption gains 150, 180, and 70. Correspondingly, we can assign to the

second group, which is comprised of the two investor types hn and lo, the consumption gains 280 and 130.

In doing so, we get (A1 + A4) = (A2 + A3) = 580, which implies that the bid-ask spread achieves its absolute

minimum, i.e. it equals zero.

Tables 1 and 2 present various scenarios and the corresponding outcomes. In Table 1, the first scenario

shown in the third row and first column, illustrates the case of an investor who gets only her minimally

required consumption gain and nothing else. As explained previously, the numbers A1, A2, A3 and A4 are

the sums of the elements which are minimally required by each investor of type ho, hn, lo, ln, respectively,

plus one or more gains from the set of remaining consumption gains {150, 180, 280, 130, 70}. In the fourth

row and first column of Table 1 the investor type ho gets her minimal requirement, i.e. 100, plus two

additional gains from the set of consumption gains {150, 180, 280, 130, 70}, and in particular, consumption

gains 180 and 70. The investor type hn shown in the second column and fourth row of Table 1, gets her

minimally required consumption gain, i.e. 50 plus one additional gain from the set {150, 180, 280, 130, 70},

and in particular, the consumption gain 280. The same process is repeated for investor types lo and ln. The

remaining calculations are performed in a similar manner.

Panel A of Table 2 displays the scenarios discussed in Table 1, whilst Panel B shows the solutions for each

scenario. To compute the interdealer price we apply directly Equation (34) with q ∈ [0, 1]. As an example,
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the interdealer price 48 in the third row is computed as follows: M (t) = 0.8 (100 − 50)+0.2 (120 − 80) = 48,

where we have chosen q = 0.8. The ask price, the bid price, the bid-ask spread, and the price of the asset

are computed using Equations (36), (37), (38), and (31), respectively. For example, the ask price 48.4 is

computed as follows:

A (t) = {z + q (1 − z)} (A1 − A2) + (1 − q) (1 − z) (A3 − A4) =

{0.2 + 0.8 (1 − 0.2)} (100 − 50) + (1 − 0.8) (1 − 0.2) (120 − 80) = 48.4

Correspondingly, the bid price, the bid-ask spread, and the price of the asset are computed as follows:

B (t) = q (1 − z) (A1 − A2) + {z + (1 − q) (1 − z)} (A3 − A4) =

0.8(1 − 0.2) (100 − 50) + {0.2 + (1 − 0.8) (1 − 0.2)} (120 − 80) = 46.4

A (t) − B (t) = z (A1 + A4 − A2 − A3) = 0.2 (100 + 80 − 50 − 120) = 2

P (t) = (A3 − A4) (1 − θ) + (A1 − A2) θ = (120 − 80) (1 − 0.5) + (100 − 50) 0.5 = 45

In the rest of scenarios displayed in Table 2, the bid-ask spread decreases to zero. This result is in line

with the findings in Duffie et al. (2005) and corresponds to the cases of a fast investor and a competing mar-

ketmaker in which, prices become competitive and the bid-ask spread approaches zero as investors find each

other more quickly and marketmakers compete with each other for faster intermediation. It must be noted

that in the case of a fast monopolistic marketmaker, fast intermediation will not lead to competitive prices

and subsequently to vanishing bid-ask spreads, but will result in wider bid-ask spreads as intermediation by

marketmakers increases. The latter result would hold for a monopolistic marketmaker with z = 1 where

the bid-ask spread increases in the intensity of meeting dealers and thus does not approach zero. Clearly,

covering all possible scenarios discussed in Duffie et al. (2005) lies outside the scope of this study.

[Table 1 about here.]
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[Table 2 about here.]

7. Conclusion

In this paper we discuss some solution concepts of game theory using soft set theory. In order to consistently

align classical game theory with soft set theory in relation to a game’s NE, the notion of homogenizing

players’ gains is introduced. To this end two assumptions are made. Based on the first assumption, players’

gain tuples must be totally ordered in chains of various lengths according to the exact format of the game.

If this assumption is relaxed, it would be hard to understand the mechanics of the game and identify how

strategies are chosen given the completely arbitrary nature of alternatives available to each player. The

second assumption regards rejecting bads, that is, points in a player’s gain tuple that decrease the player’s

pay-off. If this assumption is also relaxed, the total ordering of gains would still not work with respect to

finding a game’s solution, i.e. its NE.

In a second step, we introduce the concepts of strong and semi-strong utility. These concepts build upon

the framework of a utility correspondence whose image is the set of all non-negative real numbers and whose

objective is to assign such numbers to all alternatives, making them comparable to one another similar to

classical game theory. The strong and semi-strong utility has allowed us to convert non-totally ordered gains

into totally ordered ones and thus compute the game’s NE unambiguously.

We then examine the concept of NEMS. We start with a general framework that gives rise to an extended

game which involves the players’ strategy spaces and the game’s pure strategies power set, ordered either as

a lattice or a chain. We then define the best response correspondences in this setup. Finally, we present an

application of soft set theory to cooperative bargaining games in over-the-counter (OTC) financial markets.

The solution of such a game is defined as a pair of upper set elements, one for each player, such that their

union is equal to the universe set. We point out that the solution need not be unique. If this is indeed the

case, then choosing the optimal solution would require the introduction of an ordering relation for the various

solutions. A solution is guaranteed to be unique if the upper set elements, whose union is the universe set,

coincide with those of the minimally required sets by each player, provided that negotiations will continue.

Along these lines, a numerical example of a dynamic search-and-bargaining game in an OTC financial

market is presented motivated by the work of Duffie et al. (2005). In this numerical example, we compute
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the price of an asset, the bid and ask price, as well as the bid-ask spread for different types of scenarios by

solving an integer linear programming problem.

Game theory is a fascinating research area which has been developed as a stand-alone field of economics.

Since the seminal works of Von Neumann (1928) and Von Neumann and Morgenstern (1944) much progress

has been made in applying game theoretic models to a wide range of economic problems. On the other hand,

soft set theory is a new research area proposed in the late nineties and its study as a useful tool for explaining

solution concepts in game theory is still in the early stages. We hope that our findings will provide avenues

for future research in this area.

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current
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and games. International Journal of General Systems, 47, 244-262.

35. Forbes, K., & Rigobon, R. (2002). No contagion, only interdependence: measuring stock markets

comovements. Journal of Finance, 57, 2223–2261.

36. Friewald, N., & Nagler, F. (2019). Over-the-counter market frictions and yield spread changes. Jour-

nal of Finance, 74, 3217-3257.

37. Garman, M. (1976). Market microstructure. Journal of Financial Economics, 3, 257–275.

38. Glode, V., & Opp, C. (2016). Asymmetric information and intermediation chains. American Eco-

nomic Review, 106, 2699-2721.

39. Glosten, L.R., & Milgrom, P.R. (1985). Bid, ask and transaction prices in a specialist market with

heterogeneously informed traders. Journal of Financial Economics, 14, 71-100.

40. Hanappi, H. (2013). The Neumann-Morgenstern Project - Game Theory as a Formal Language for the

Social Sciences. In: Hanappi, H. (eds). Game Theory Relaunched. IntechOpen Publishing.

41. Harode, S., Jha, M., Srivastava, N., & Das, S. (2018). Fuzzy soft set based decision approach for

financial trading. Advances in Modelling and Analysis C, 73, 102-111.

33



42. Hasbrouck, J. (1995). One security, many markets: Determining the contributions to price discovery.

Journal of Finance, 50, 1175-1199.

43. Ho, T., & Stoll, H.R. (1980). On dealer markets under competition. Journal of Finance, 35, 259–267.

44. Ho, T., & Stoll, H.R. (1981). Optimal dealer pricing under transactions and return uncertainty. Journal

of Financial Economics, 9, 47-73.

45. Ho, T., & Stoll, H.R. (1983). The dynamics of dealer markets under competition. Journal of Finance,

38, 218–231.

46. Hugonnier, J., Lester, B., & Weill, P-O. (2020). Frictional intermediation in over-the-counter markets.

Review of Economic Studies, 87, 1432-1469.

47. Iimura, T., Murota, K., & Tamura, A. (2005). Discrete fixed point theorem reconsidered. Journal of

Mathematical Economics, 41, 1030-1036.

48. Jacob John, S. (2021). Soft Sets: Theory and Applications. Studies in Fuzziness and Soft Computing,

Springer Nature Switzerland AG.

49. Jankowitsch, R., Nashikkar, A., & Subrahmanyam, M.G. (2011). Price dispersion in OTC markets: A

new measure of liquidity. Journal of Banking and Finance, 35, 343–357.

50. Kakutani, S. (1941). A generalization of Brouwer’s fixed point theorem. Duke Mathematical Journal,

8, 457-459.

51. Kandemir, M.B. (2018). The concept of σ-algebraic soft set. Soft Computing, 22, 4353–4360.

52. Kaufman S. (1993). The Origin of Order. Self-Organization and Selection in Evolution, Oxford

University Press

53. Kharal, A. (2010). Distance and similarity measure for soft sets. New Mathematics and Natural

Computation, 6, 321–334.

54. Kim, J.Y. (2019). Neutral bargaining in financial over-the-counter markets. AEA Papers and Proceed-

ings, 109: 539-44.

55. Kuhn. H. (1950). Extensive games. Proceedings of the National Academy of Sciences 36, 570–576.

56. Kyle, A.S. (1985). Continuous auctions and insider trading. Econometrica, 53, 1315-1335.

57. Kyle, A.S. (1989). Informed speculation with imperfect competition. Review of Economic Studies,

56, 317–356.

34



58. Lagos, R., Rocheteau, G., & Weill, P-O. (2011). Crises and liquidity in over-the-counter markets.

Journal of Economic Theory, 146, 2169–2205.

59. Longstaff, F.A. (2010). The subprime credit crisis and contagion in financial markets. Journal of

Financial Economics, 97, 436-450.

60. Maeda, T. (2003). On characterization of equilibrium strategy of two-person zero-sum games with

fuzzy payoffs. Fuzzy Sets and Systems, 139, 283-296.

61. Maharana, M., & Mohanty, D. (2021). An application of soft set theory in decision making problem

by parameterization reduction. Soft Computing, 25, 3989–3992.

62. Maji, P.K., Biswas, R., & Roy, A.R. (2001). Fuzzy soft sets. Journal of Fuzzy Mathematics, 9,

589-602.

63. Maji, P.K., Roy, A.R., & Biswas, R. (2002). An application of soft sets in a decision making problem.

Computers & mathematics with applications, 44, 1077-1083.

64. Maji, P.K., Biswas, R., & Roy, A.R. (2003). Soft set theory. Computers & mathematics with applica-

tions, 45, 555-562.

65. Majumdar, P., & Samanta, S.K. (2010). Generalised fuzzy soft sets. Computers & Mathematics with

Applications, 59, 1425-1432.

66. Maynard-Smith J. (1982). Evolution and the Theory of Games. Cambridge University Press.

67. Maynard-Smith J. (1988). Did Darwin get it Right? Essays on Games, Sex and Evolution. Penguin

Books, London.

68. Mizrach, B., & Neely, C.J. (2008). Information shares in the US Treasury market. Journal of Banking

and Finance, 32, 1221–1233.

69. Molodtsov, D. (1999). Soft set theory-first results. Computers & Mathematics with Applications, 37,

19-31.

70. Murthy, N.V.E.S., & Maheswari, C. (2017). Generalized soft set theory from f-set theory. Advances

in Fuzzy Mathematics, 12, 1-34.

71. Nash, J.F. (1950). The bargaining problem. Econometrica, 18, 155-162.

72. Nash, J.F. (1951). Non-cooperative games. Annals of Mathematics, 286-295.

73. Nash, J.F. (1953). Two-person cooperative games. Econometrica, 21, 128-140.

35



74. Nelson R., & Winter S. (1982). An Evolutionary Theory of Economic Change. Harvard University

Press

75. O’Hara, M. (1995). Market Microstructure Theory. Oxford: Blackwell.

76. O’ Sullivan, C., & Papavassiliou, V.G. (2019). Measuring and analyzing liquidity and volatility dy-

namics in the euro-area government bond market, In: S. Boubaker and D.K. Nguyen (eds). Handbook

of Global Financial Markets: Transformations, Dependence, and Risk Spillovers. World Scientific

Publishing, Ch 15, pp. 361-400.

77. Papavassiliou, V.G. (2014). Financial contagion during the European sovereign debt crisis: a selective

literature review. Research Paper No 11, June 2014, Crisis Observatory - Hellenic Foundation for

European and Foreign Policy (ELIAMEP)

78. Pawlak, Z. (1982). Rough sets. International Journal of Computer and Information Sciences, 11,

341-356.

79. Prasertpong, R. (2021). Roughness of soft sets and fuzzy sets in semigroups based on set-valued

picture hesitant fuzzy relations. AIMS Mathematics, 7, 2891–2928.

80. Prigogine I. (1984). Order out of Chaos. Bantam, New York.

81. Ranaldo, A., & Somogyi, F. (2021). Asymmetric information risk in FX markets. Journal of Financial

Economics, 140, 391-411.

82. Shannon C., & Weaver W. (1949). The Mathematical Theory of Communication. University of Illinois

Press

83. Shapley L. (1953). ”A Value for n-person Games”, in H. W. Kuhn and A. W. Tucker (eds), Contribu-

tions to the Theory of Game, II, Annals of Mathematical Studies, Vol 28. Princeton University Press

pp. 307–317

84. Shubik, M. (2011). The present and future of game theory. Cowles Foundation Discussion Paper No.

1808, Yale University

85. Stoll, H.R. (1978). The supply of dealer services in securities markets. Journal of Finance, 33,

1133–51.

86. Tarski, A. (1955). A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Math-

ematics, 5, 285-309.

36



87. Thielle, H. (1999). On the concepts of qualitative fuzzy sets. IEEE International Symposium on

Multiple-Valued Logic, May 20-22, Tokyo, Japan.

88. Tsoy, A. (2016). Over-the-counter markets with bargaining delays. Working Paper, Einaudi Institute

for Economics and Finance.

89. Vayanos, D. (2004). Flight to quality, flight to liquidity, and the pricing of risk. National Bureau of

Economic Research, Working Paper 10327.

90. Vayanos, D., & Wang, T. (2007). Search and endogenous concentration of liquidity in asset markets.

Journal of Economic Theory, 136, 66–104.

91. Vijay, V., Chandra, S., & Bectorb, C.R. (2005). Matrix games with fuzzy goals and fuzzy payoffs.

Omega, 33, 425-429.

92. Von Neumann, J. (1928). Zur theorie der gesellschaftsspiele. Mathematische annalen, 100, 295-320.

93. Von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behavior. Princeton,

NJ: Princeton University Press

94. Weintraub, E.R. (Ed.). (1992). Toward a history of game theory (Vol. 24). Duke University Press.

95. Wiener N. (1948). Cybernetics: or Control and Communication in the Animal and the Machine. MIT

Press

96. Werner, I.M., & Kleidon, A.W. (1996). U.K. and U.S. trading of British cross-listed stocks: An

intraday analysis of market integration. Review of Financial Studies, 9, 619-664.

97. Wiener N. (1954). The Human Use of Human Beings: Cybernetics and Society. Houghton Mifflin,

Boston.

98. Xu, W., Xiao, Z., Dang, X., Yang, D., & Yang, X. (2014). Financial ratio selection for business failure

prediction using soft set theory. Knowledge-Based Systems, 63, 59-67.

99. Xu, W., & Xiao, Z. (2016). Soft set theory oriented forecast combination method for business failure

prediction. Journal of Information Processing Systems, 12, 109-128.

100. Xu, D., Zhang, X., & Feng, H. (2019). Generalized fuzzy soft sets theory-based novel hybrid ensemble

credit scoring model. International Journal of Finance and Economics, 24, 903–921.

101. Yang, Z. (2009). Discrete fixed point analysis and its applications. Journal of Fixed Point Theory and

Applications, 6, 351-371.

37



102. Zadeh, L.A. (1965). Fuzzy sets. Information and control, 8, 338-353.
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Appendix - Proofs of Theorems

Proof of Theorem 1. If we define w (A) =
∑

αi∈A
w ({αi}) and w (∅) = 0 this in turn defines a map

w : 2U → R≥0 which satisfies the properties of strong utility. Conversely, if we have a utility map w :

2U → R≥0 with w (A ∪ B) = w (A) + w (B) when A ∩ B = ∅, then w ({αi}) exists in R≥0 and w
({

αi, α j

})

=

w
(

{αi} ∪
{

α j

})

= w ({αi}) + w
({

α j

})

− w
(

{αi} ∩
{

α j

})

= w ({αi}) + w
({

α j

})

. Inductively, this is true for sets

with more than two elements.

Remark 1. Theorem 1 implies that strong utility is additive. For example, if the utility obtained from

some alternative {u1} is equal to 2, and the utility obtained from some other alternative {u2} is 3, then the

utility of the alternative {u1, u2} is equal to 5, where {u1} , {u2} ⊆ {u1, u2} , {u1} ∩ {u2} = ∅ and w (∅) = 0.

Proof of Theorem 2. Let w be strong and w
(

2U
)

⊂ R≥0. If A ⊆ B, then B = A ∪ (B\A), where A

and B\A are disjoint. By the strong utility property, w (B) = w (A) + w (B\A), where w (B\A) ≥ 0 implies

w (B) ≥ w (A).

Remark 2. Theorem 2 implies that two alternatives may fit very well together, indicating that the utility

earned by a player is greater than the utility of each alternative taken separately. Alternatively, it may indicate

that two alternatives may not fit well together, i.e. the sum utility gained is less than the sum of utilities taken

separately. If for example w ({u1}) = 2 and w ({u2}) = 3, then w ({u1, u2}) ≥ 3. If the two alternatives don’t

fit well together, then w ({u1, u2}) = 3.5 which is less than the sum utility w ({u1}) + w ({u2}) = 5, whereas if

one alternative complements another it may be that w ({u1, u2}) = 6.
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Table 1: Numerical bargaining scenarios. The table presents bargaining scenarios for four investor types: ho, hn, lo, and ln. The

investors are categorised according to an intrinsic type labeled ’high’ (h) or ’low’ (l), and their status as owners (o) or not (n) of an

asset. Low-type investors who own an asset bear holding costs, whilst high-type investors do not bear such costs. The numbers A1, A2,

A3, and A4 denote the sums of the elements which are minimally required by each investor of type ho, hn, lo, ln, respectively, plus one

or more gains from a set of remaining consumption gains.

Bargaining scenarios

Investor type: ho Investor type: hn Investor type: lo Investor type: ln

A1 = 100 + 0 A2 = 50 + 0 A3 = 120 + 0 A4 = 80 + 0

A1 = 100 + 180 + 70 A2 = 50 + 280 A3 = 120 + 130 A4 = 80 + 150

A1 = 100 + 150 + 70 A2 = 50 + 130 A3 = 120 + 280 A4 = 80 + 180

A1 = 100 + 180 A2 = 50 + 130 A3 = 120 + 280 A4 = 80 + 150 + 70

A1 = 100 + 150 A2 = 50 + 131 A3 = 120 + 280 A4 = 80 + 180 + 70
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Table 2: Numerical bargaining scenarios and solutions. Panel A of the table presents bargaining scenarios for four investor types:

ho, hn, lo, and ln while Panel B shows the solutions for each scenario. The investors are categorised according to an intrinsic type

labeled ’high’ (h) or ’low’ (l), and their status as owners (o) or not (n) of an asset. Low-type investors who own an asset bear holding

costs, whilst high-type investors do not bear such costs. The numbers A1, A2, A3, and A4 denote the sums of the elements which are

minimally required by each investor of type ho, hn, lo, ln, respectively, plus one or more gains from a set of remaining consumption

gains. M (t) , A (t) , B (t) denote the interdealer price, ask price, and the bid price, respectively. A (t)− B (t) denotes the bid-ask spread,

while P (t) is the asset price.

Panel A: Bargaining scenarios

Investor type: ho Investor type: hn Investor type: lo Investor type: ln

A1 A2 A3 A4

100 50 120 80

350 330 250 230

320 180 400 260

280 180 400 300

250 180 400 330

Panel B: Solutions

Interdealer price M (t) Ask price A (t) Bid price B (t) Bid-Ask spread A (t) − B (t) Asset price P (t)

48 48.4 46.4 2 45

20 20 20 0 20

140 140 140 0 140

100 100 100 0 100

70 70 70 0 70
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