### Transforming Ireland's Electric Power System



Dermot Byrne, Chief Executive, EirGrid plc

ESI Seminar 18th June 2010

### **Transforming the Power System**

Carbon Neutrality Electrification of Transport and Heating Sectors

Smart Grids Renewables Integration and Grid Development

**Deregulation** Competition and Customer Choice

Time

### **Industry Value Chain**



Evolution of Value Chain:

- 1. Competition in generation and supply
- 2. Introduction of Independent Regulatory Authority
- 3. Network Businesses remain as 'natural monopolies', but regulated
- 4. Independence of Transmission System Operators
- 5. Evolution of Wholesale Power Markets
- 6. Strategic push towards regional markets (EU)

EirGrid

 Ireland's Independent Transmission System Operator and Operator of the Wholesale Power Market

- Commercial State owned Company
- Separate from all parties in the electricity market
- Established by statute as TSO and licensed by Commission for Energy Regulation
- Annual turnover of approximately €300m

### EirGrid's Role

- To develop, maintain and operate a safe, secure, reliable, economical and efficient transmission system for the benefit of our customers
- To deliver quality transmission and market services
- To advise the Regulator (CER) in relation to security of supply

### **EirGrid's Role in the Value Chain (Now)**



Key Elements of Role:

- 1. Grid Development
- 2. Power System Operation
- 3. Transmission Access
- 4. Power Market Settlement

**EirGrid's independence from all** market participants is critical

### **EirGrid's Role in the Value Chain (Future)**



Key Elements of Role:

- 1. Grid Development
- 2. Power System Operation
- 3. Transmission Access
- 4. Power Market Settlement

**EirGrid's independence from all** market participants is critical

# **Transmission Grid**

- High capacity, efficient, reliable link between
  - Generation
  - Demand centres
  - Interconnections to other systems
- Equivalent to "broadband" power or motorways

400 kV



4000 km

1830 km

110 kV

220 kV



# THE IRELAND V ENGLAND RUGBY MATCH ALTERED THE USAGE OF ELECTRICITY ACROSS THE WHOLE COUNTRY



### **EirGrid – An All-Island Energy Company**









### **Transmission Projects in Progress**

|                            | 400 kV / 220 kV/ 110 kV |
|----------------------------|-------------------------|
| No. of New Stations        | 16                      |
| Overhead Line              | 610 km                  |
| Underground Cable          | 33.1 km                 |
| No. of New Transformers    | 17                      |
| No. of New Capacitor Banks | 12                      |
| Uprates                    | 582 km                  |
| Refurbishments             | 83 km                   |

### **Transforming the Power System**

Carbon Neutrality Electrification of Transport and Heating Sectors

Smart Grids Renewables Integration and Grid Development

**Deregulation** Competition and Customer Choice

Time

### Power System Transformation – Two Dimensions



### **Investment Dimension**

- The major Infrastructural Building Blocks
- The 'Hardware'





### **Operational Dimension**

- Policies, procedures, controls etc
- The 'Software'



### **Ireland's Renewable Policy Target**

#### Wind as a Percentage of Total Electricity (2020 Target) - Select EU Countries









### eastwest interconnector



## **ON TARGET FOR 2012**



### **Developing the Grid - Grid25**



2,200 km Upgrades

1,150 km New Build

### €4 billion





### **Existing Transmission Network in South**



### **GRID25 Network Development South**



### Primary Corridors for Reinforcement Investigation

57

### **Construction Challenge**



#### Getting the Balance Right:

- Reliability
- Cost
- Impact

### Hourly Average Wind (MW) over 1 week (week ending March 15th 2009)





#### Challenges

- Resource Intermittency
- System Stability
- Uncertainty
- Complexity
- Portfolio Performance



#### Responses

- ICT
- Customer responsiveness
- Decision support tools
- Codes / Protocols
- Smart Meters



### **TSO Renewable Facilitation Studies**

#### **Objectives**:

- Increase our understanding of the behaviour of the power system with large amounts of renewable generation
- Identify any potential technical issues
- Develop mitigation measures
- Wrap it all up in a comprehensive strategy for the operation of the power system with large amounts of renewables

#### Studies:

- 4000 Frequency response studies 5000 Transient Stability studies
- 1000 Short Circuit Level studies Analysis of Wind patterns

First comprehensive study of its kind in the World

### **Transforming the Power System**



Electrification of Transport and Heating Sectors

Smart Grids Renewables Integration and Grid Development

**Deregulation** Competition and Customer Choice

Time

### Case for further interconnection



- This confirms the very strong economic case for the East-West Interconnector.
- Further interconnection between AI and GB is economically attractive.
- Interconnection from Ireland to France also appears beneficial, but further detailed work is required to verify this and evaluate this against Ireland – Great Britain interconnectors.
- Interconnection assists in integration of more wind on the system, particularly for export.

## **EirGrid Off-Shore Grid Study**

Study Objectives:

- Develop optimised off-shore grid development strategies
- Utilise that strategy to inform the TSO offshore functional designs and policies

#### Scenarios:

- 3/5/7GW off-shore.
- Study Period out to 2030
- Part A: off-shore Ireland only
- Part B: incorporating links to rest of Europe

Will feed into other broader-based studies (ENTSO-E, SEI etc.)



### **Future Generation Portfolio Options**

#### **Objectives**:

- Dramatic reduction in Carbon Intensity
- Identify technology options
- Contribute to informed debate

#### Study:

- Year 2035 selected
- Six Balanced Portfolios identified
- Detailed modelling performed
- Results presented



### Context

- Moneypoint, peat and oil plants set to close: fuel diversity issue.
- Debate should now progress to longer term policy
- Goal will be a transition to a low carbon electricity system.
- Wide range of options have development potential in this timeframe.

#### **Portfolio Options**



#### Total capital investment in plant



#### Annualised costs – Central fuel price scenario



Fixed generator costs

Variable generator costs

System operation

#### Annualised costs – High fuel price scenario



Fixed Generator costs

Variable generator costs

System operation

#### **Residential Retail prices – Generation component (Central fuel price)**



#### **Residential Retail prices – Generation component (High fuel price)**



#### **Carbon Intensities**



■ CO2 ■ CO2 (including imports)

### Summary

- Significant emissions reductions can be achieved in all portfolios
- All portfolios have higher capital costs and lower running costs relative to today.
- Under current policies the gas portfolio is the most likely outcome and could be viewed as a transitional step towards carbon neutrality by 2050.
- Coal CCS, nuclear, high renewables, storage and interconnection are all able to further reduce emission levels, however a number of technical, environmental and cost issues would need to be overcome

### Conclusion

- The purpose of this report is to contribute to a debate on energy policy.
- It builds on, and is complementary to, the Joint Committee's previous consultation and report on Electricity Needs post 2020.
- There are no simple or easy choices in this complex area.

### **Transforming the Power System**

Carbon Neutrality Electrification of Transport and Heating Sectors

Smart Grids Renewables Integration and Grid Development

**Deregulation** Competition and Customer Choice

Time

