
The Variance Gamma Scaled Self-Decomposable

Process in Actuarial Modelling

Conall O’Sullivan

University College Dublin ∗

Michael Moloney

Mercer IC

Initial draft: 15 May 2007

This draft: June 2010

Abstract

A scaled self-decomposable stochastic process put forward by Carr, Geman, Madan

and Yor (2007) is used to model long term equity returns and options prices. This

parsimonious model is compared to a number of other one-dimensional continuous time

stochastic processes (models) that are commonly used in finance and the actuarial

sciences. The comparisons are conducted along three dimensions: the models ability to

fit monthly time series data on a number of different equity indices; the models ability to

fit the tails of the times series and the models ability to calibrate to index option prices

across strike price and maturities. The last criteria is becoming increasingly important

given the popularity of capital gauranteed products that contain long term imbedded

options that can be (at least partially) hedged by purchasing short term index options

and rolling them over or purchasing longer term index options. Thus we test if the

models can reproduce a typical implied volatility surface seen in the market.
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1 Introduction

The lognormal (LN) process is the most popular stochastic process used to model stock

prices despite some serious shortcomings. It is well documented that the LN process fails

to capture certain time series properties of stock prices, such as discontinuous jumps and

volatility clustering. The LN process also results in returns that are normally distributed

with zero skewness and zero excess kurtosis, in conflict with the distribution of most stock

and index returns that exhibit significant skewness and excess kurtosis. The LN process

also fails to fit the fat tails observed in the market where extreme events happen more

frequently that the LN process predicts. Options markets demonstrate the pricing and

hedging potential of financial models. The LN process and the associated Black-Scholes

(BS) options pricing model fails to capture certain properties of the options markets. If

the assumptions underlying the BS option pricing model were correct, the BS implied

volatilities for options on the same underlying asset would be constant for different strike

prices and maturities. However in reality BS implied volatilities are varying over strike price

and maturity in what is known as the implied volatility surface. This effect comes from two

sources: the data generating process is different from a LN process as evidenced by time

series analysis and financial markets are incomplete whereby it is impossibe to perfectly

replicate an option by dynamic trading in the underlying asset and a risk-free bond. In this

paper we focus on the former and look at a number of different choices for the underlying

stochastic process and test these stochastic processes in terms of their ability to fit time

series data, with special emphasis on the tails of the data and the models ability to fit a

range of different option price data.

Many alternative continuous time stochastic processes to LN have been proposed in the

literature to address the shortcoming mentioned above. Some of the most popular have been

jump-diffusion processes, Lévy processes, regime switching processes, stochastic volatility

processes, and mixtures of these. They have addressed the shortcomings mentioned above

with some degree of success. In this paper a parsimonious stochastic process known as the

variance gamma scalable self-decomposable (VGSSD) process is compared to a number of

other continuous time one-dimensional stochastic processes in terms of their ability to fit

underlying time series data, tails of the time series data and in terms of their option price

calibration performance. The alternative models the VGSSD is compared to include the

lognormal model, a continuous time version of the regime switching lognormal model and

the variance gamma model. It should be noted that all the models used are continuous
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time models and the VGSSD model has no known density function so parameter estimation

and derivatives pricing is carried out for all models using the characteristic function of the

model. This means that the approach taken in this paper can be applied to a wide range of

models with a closed form characteristic function. These include Heston’s (1993) stochastic

volatility model, stochastic volatility jump-diffusion models, such as Bates (1996), and a

large number of Lévy processes, see Schoutens (2003), and references therein.

The remainder of the paper is organised as follows. Section 2 introduces the various

models used in the paper. In section 3 the model parameters are estimated using financial

time series on three indices, the S&P 500, the TSE 300 and the FTSE 100. It should be

emphasised that in this section we are concerned with the real world measure, sometimes

known as the P -measure. Section 4 goes on to examine the tail behaviour of the models

in the P -measure. Section 5 is concerned with calibrating the models to derivatives prices

on a given day using a number of different strike prices and maturities. In this case we

are concerned with the risk neutral or the Q-measure. The relevance of a models options

pricing ability is discussed and section 6 concludes.

2 Continuous time models for modelling long term equity

returns and option prices

In this section we give a brief introduction to the various models considered in the paper

and focus particular attention on the VGSSD model. Continuously compounded returns

(referred to as returns when the context is clear) are denoted as X(t) = ln [S (t) /S (t− 1)]

where S (t) is the stock (or stock index) price at time t.

2.1 Lognormal model

The lognormal (LN) process models continuously compounded returns as an arithmetica

Brownian motion so that

X(t) = νt+ σW (t), (1)

where W (t) is a standard Wiener process, ν is the instantaneous drift and σ is the instan-

taneous volatility of the returns. With the use of Itô’s lemma this can be formulated into
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the following well known stochastic differential equation for the stock price

dS(t) = S(t) (µdt+ σdW (t)) , (2)

where µ is the growth rate of the stock and is related to ν as follows ν = µ− 1
2σ

2. This can

be integrated to yield the following formula for the dynamics of the stock or stock index

price conditional on the initial stock price S(0)

S(t) = S(0) exp
((

µ− σ2/2
)

t+ σW (t)
)

. (3)

As it will be used in later sections we introduce the characteristic function for the lognormal

process in this section for completeness. The characteristic function is given by

φX(t)(u) = EP
0

[

eiuX(t)|X(0)
]

= e(iuν− 1
2
u2σ2)t, (4)

where i is the imaginary number
√
−1 and u is a Fourier transform variable. This model

results in returns that are normally distributed and the famous Black Scholes option pricing

model for derivatives.

2.2 Variance gamma model

The variance gamma (VG) process is a popular Lévy process used in financial modelling

introduced by Madan and Seneta (1990), Madan and Milne (1991) and Madan, Carr and

Chang (1998). The idea is to model stock price movements occurring on business time

rather than on calendar time using a time transformation of a Brownian motion. The

resulting model is a four parameter model where roughly speaking we can interpret the

parameters as controlling the location, volatility, skewness and kurtosis of the underlying

returns distribution. Closed form option pricing formulas exist under the VG model, see

Madan, Carr and Chang (1998), however they involve the computation of the modified

Bessel function of the second kind. Thus it is more efficient to use the Fourier transform

method of Carr and Madan (1999) that utilises knowledge of the characteristic function.

The gamma process is used to transform from calendar to business time. The analogy

commonly used is that when the random time change speeds up the calendar clock the

market is more turbulent and when the random time change slows down the calendar clock

the market is more tranquil. The gamma process, like the Poisson process, is a pure jump

process and this results in the VG process being a pure jump process with no diffusion

component. In fact jumps of negligible size arrive infinitely often in the VG model and
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this infinite activity allows the model to behave like a diffusion process for small jumps.

Jumps of non-negligible size occur with a finite frequency and the arrival rate of these

jumps decreases monotonically with the jump size. Thus the VG model can accommodate

non-diffusive jumps without the use of an orthogonal Poisson jump process.

The gamma process is a subordinator, i.e. it is a stochastic process which starts at

zero and has stationary and independent gamma distributed increments, see Schoutens

(2003). More precisely, time enters in the first parameter: the gamma process γ(t) follows

a Gamma(at, b) law where the gamma probability density function Gamma(a, b) is given

by

fGamma (x; a, b) =
baxa−1

Γ (a)
e−bx, x > 0.

The characteristic function of the gamma process γ(t) is given by

φγ(t)(u) =E
[

eiuγ(t)
]

=

(

1 − iu

b

)

−at

.

The variance gamma process uses a gamma process to time change a Brownian motion.

Rather than evaluate a Brownian motion at time t it is evaluated at time γ(t) where γ(t)

follows a gamma process with E[γ(t)] = t and var[γ(t)] = νt. To do this choose a = t
ν

and

b = 1
ν

so that the characteristic function of the process γ(t) can be written as

φγ(t)(u) = (1 − iuν)−
t
ν .

Let b(t; θ, σ) denote a Brownian motion with drift

b(t; θ, σ) = θt+ σW (t), (5)

where θ and σ are respectively the instantaneous drift and volatility and W (t) is a standard

Brownian motion. From the lognormal section we know that the characteristic function of

this process is given by

φb(t)(u) = e(iuθ− 1
2
u2σ2)t.

Madan, Carr and Chang (1998) define a VG process, X(t;σ, ν, θ),as a time changed Brow-

nian as follows

X(t;σ, ν, θ) = θγ(t) + σW (γ(t)) . (6)

The density function of the VG process is known in closed form and requires the computa-

tion of the modified Bessel function of the second kind which can be time consuming. Thus
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as with many Lévy processes it is sometimes more convenient to work with the character-

istic function of the process which can be found by conditioning on the jump γ(t) and is

given by

φX(t)(u) =

(

1 − ν

(

iuθ − 1

2
u2σ2

))

−
t
ν

,

=

(

1 − iuνθ +
1

2
u2νσ2

)

−
t
ν

. (7)

The dynamics of the stock or stock index price are defined as

S(t) = S(0) exp((µ+ ω) t+X(t;σ, ν, θ)), (8)

where µ is the instantaneous expected return of the stock evaluated at calendar time and

ω is a compensator term that is chosen to ensure that

EP
0 [S(t)] = S(0) exp(µ t).

Comparing equations 3 and 8 it can be seen that the Brownian motion volatility term in

equation 3, σW (t), that depends on one parameter σ has been replaced with a VG random

variable, X(t;σ, ν, θ), that depends on three parameters, namely σ, ν and θ. The standard

lognormal compensator term (also known as a convexity correction) −σ2/2 has also been

replaced with a more general compensator term ω which is easily derived from knowledge

of the characteristic function (see below).

The risk neutral process used for option pricing has the following dynamics

S(t) = S(0) exp((r − q + ω∗) t+X(t;σ∗, ν∗, θ∗)), (9)

where r and q are the continuously compounded risk-free rate and dividend yield and the

vector {σ∗, ν∗, θ∗} contains the risk neutral parameters that need not be equal to their

real-world counterparts1 unlike in the diffusion case when the volatility parameter must be

the same in both measures. A discussion on the appropriate measure change is beyond

the scope of this paper. The approach taken in this paper is to imply the risk neutral

parameters from a range of options prices on a given day by calibrating model option prices

to market option prices and imposing that the growth rate of the stock is equal to the

continuously compounded risk neutral growth rate r − q.

1See Madan, Carr and Chang (1998) and Cont and Tankov (2004) for more detail on this delicate issue.
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The characteristic function for the logarithm of the future stock price, lnS(t), can be

derived from the characteristic function for the VG process and is given by

φln S(t)(u) = EP
0

[

eiu ln S(t)
]

= exp {iu (lnS(0) + (µ+ ω)t)}φX(t)(u). (10)

The compensator term can be found from this characteristic function and is given by

ω = −1
t
ln

(

φX(t) (−i)
)

. This ensures the expectation of the future stock price is given by

EP
0 [S(t)] = EP

0

[

eiu ln S(t)
]
∣

∣

∣

u=−i
= exp

{

lnS(0) + µ t− lnEP
0

[

eX(t)
]}

EP
0

[

eX(t)
]

=
S(0)eµ tEP

0

[

eX(t)
]

EP
0

[

eX(t)
] = S(0)eµ t.

The moments of the variance gamma process X(t) are given by

EP
0 [X (t)] = θt, (11)

Var [X (t)] =
(

σ2 + θ2ν
)

t, (12)

Skew [X (t)] =

(

3σ2θν + 2θ3ν2
)

(σ2 + θ2ν)
3
2

t−
1
2 , (13)

Kurt [X (t)] = 3 + 3ν

[

2 − σ4

(σ2 + θ2ν)2

]

t−1. (14)

This results in the following real world expectation for the continuously compounded returns

EP
0

[

ln

(

S(t)

S(0)

)]

= µ t− lnφX(t) (−i) + θt

= µ t− ln

(

1 − θν − 1

2
σ2ν

)

−
t
ν

+ θt

=

(

µ+
1

ν
ln

(

1 − θν − 1

2
σ2ν

)

+ θ

)

t

→
(

µ− 1

2
σ2

)

t as ν → 0.

It can be seen that as ν → 0 the standard lognormal convexity correction applys to the

mean of the continuously compounded returns. When ν 6= 0 the convexity correction is

more complex. The higher moments of the continuously compounded returns are the same

as the VG higher moments because the deterministic components cancel out.
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Figure 1: Simulations of a gamma process
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Figure 2: Simulations of a variance gamma and a variance gamma scaled self-decomposable

process
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2.3 Variance gamma scaled self-decomposable process

Straightforward Lévy processes such as the example described above are powerful in terms of

capturing skewness and kurtosis observed in financial time series and in risk neutral density

functions implied from options prices at a particular horizon. However, Lévy processes

are driven by homogeneous and independent increments which fail to capture volatility

clustering evident in market returns and, in a related way, do not accommodate option

prices across a range of different maturities very well. Konikov and Madan (2002) show

that all Lévy processes have a skewness and excess kurtosis that decreases with the length

of the time horizon according to t−
1
2 and t−1 respectively (see equations 13 and 14 above

for the VG case). However evidence from the options markets indicated that the higher

moments implied from options prices were constant or even increasing slighty over time.

Konikov and Madan (2002) proposed using a regime switching variance gamma process to

model stock returns and option prices. This model is no longer a Lévy process and lacks

the parsimony of the VG process as it has a total of nine parameters. On the other hand

the model does provide a better fit to option prices across a wide range of strike prices and

maturities and allows for two hidden regimes thus incorporating stochastic volatility by the

random switching between regimes of different volatilities.

Other models have addressed this term structure of moments issue. These include

stochastic volatility models proposed by Hull and White (1988) and Heston (1993) among

many others. Stochastic volatility can be incorporated into a Lévy process in two ways.

The first is to allow the volatility parameter to be a stochastic process and the second

method is to time change a Lévy process where the second time change operates on the

time t in the exponent of the characteristic function. These models require between six

and ten parameters and involve a two-dimensional data generating process. This moti-

vated Carr, Geman, Madan and Yor (2007) to consider more parsimonious models based

on one-dimensional Lévy processes. Their idea was to construct stochastic processes that

had inhomogeneous independent increments from Lévy processes with homogeneous inde-

pendent increments. They contructed these stochastic processes in a way that rendered

their higher moments constant over the maturity horizon. We only consider one of the

models proposed by CGMY (2007) which is built using the variance gamma process. Their

results indicated that this was one of the more successful models that they considered.

A self-decomposable random variable has the same distribution of as a scaled version

of itself and an independent residual random variable. The variance gamma process is an
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example of a self-decomposable process. Self-decomposable processes are Lévy processes

with jump arrival rates that are decreasing in the jump size. There other specific technical

constraints on the characteristic function for a Lévy process to be a self-decomposable

process, see Schoutens (2003) for more information on this. A self-decomposable random

variable also has a distribution of class L which means it can motivated as a limit law

with more general scaling than the Gaussian limit law. This means that self-decomposable

processes can be motivated as limit laws where the independent infleunces being summed are

of different orders of magnitude. Thus they are appropriate building blocks for stochastic

processes used to model financial markets. However self-decomposable processes (since they

are a subset of Lévy processes) have higher moments that depend on the maturity horizon.

This is why CGMY (2007) modelled returns using scaled self-decomposable processes.

The variance gamma scaled self-decomposable (VGSSD) stochastic process can be con-

structed from the variance gamma stochastic process as follows: define the scaled stochastic

process X(t) such that it is in equal in law to tγXV G(1) where XV G(1) is a variance gamma

random variable at unit time. It follows that the characteristic function of X(t) is given by

φX(t)(u) = φXV G(1)(ut
γ) =

(

1 − iutγνθ +
1

2
u2t2γνσ2

)

−
1
ν

. (15)

VGSSD is a scaled stochastic process so its higher moments remain constant with the

maturity horizon. The moments of the process are given by

E [X(t)] =θtγ , (16)

var [X(t)] =
(

σ2 + θ2ν
)

t2γ , (17)

Skew [X(t)] =

(

3σ2θν + 2θ3ν2
)

(σ2 + θ2ν)
3
2

, (18)

Kurt [X(t)] =3 + 3ν

[

2 − σ4

(σ2 + θ2ν)2

]

. (19)

As far as the authors know the VGSSD model does not have a closed form density function

thus one must use the characteristic function when evaluating the model using time series

data or option prices. We now model the stock price according to equation 8 replacing the

VG process X(t;σ, ν, θ) with the VGSSD process X(t;σ, ν, θ, γ). The risk neutral dynamics

of the stock or index price are modelled in the same way as with the VG process where

the risk neutral parameters are allowed to be different from their real world values. In

both the real and risk neutral worlds the appropriate compensator terms, ω(t) and ω∗(t),
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must be used. These are derived from the VGSSD characteristic function with ω(t) =

−1
t
lnφX(t) (u). This results in the following real world expectation for the continuously

compounded returns

EP
0

[

ln

(

S(t)

S(0)

)]

= µt− lnφX(t) (−i) + θtγ

= µt− ln

(

1 − θνtγ − 1

2
σ2νt2γ

)

−
1
ν

+ θtγ

= µt+
1

ν
ln

(

1 − θνtγ − 1

2
σ2νt2γ

)

+ θtγ

→ µt− 1

2
σ2t2γ as ν → 0

→
(

µ− 1

2
σ2

)

t as ν → 0 & γ → 1

2
.

2.4 Regime switching lognormal process

In this paper a two-state regime switching lognormal (RSLN) stochastic process, where the

regimes are driven by a continuous time Markov switching process, is used as a benchmark

model given its popularity in the actuarial literature. Hardy (2001) contains a very thorough

review of the relevance of the regime switching lognormal model in modelling long term

returns and option prices. Hardy uses a discrete time Markov switching process in her

paper. This model can switch regimes from one interval to the next but not in between

intervals. In this study to remain consistent with the other models used in the paper a

regime switching lognormal process with a continuous time Markov switching process is

used. Guo (2001) introduced such a model and derived option pricing formula in terms

of an integral of a Bessel function. This semi-closed form solution is time consuming for

the purposes of estimation and calibration. For reasons of computational speed, and to

remain consistent with the other models used in this paper, it is preferred to work with

the characteristic function of the stochastic process rather than the density function of

the process or the known option price formulae. Konikov and Madan (2002) derived the

characteristic function for a regime switching variance gamma process where the regime

switch follows a continuous time Markov switching process. In this paper this characteristic

function is adapted to the regime switching lognormal case.
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The two-state RSLN model assumes the following dynamics for the returns

X (t) =

∫ t

0
[(1 − U (s)) dX1 (s) + U (s) dX0 (s)] , (20)

where X0 (t) and X1 (t) are lognormal processes with

X0 (t) =
(

µ0 − σ2
0/2

)

t+ σ0W0(t),

X1 (t) =
(

µ1 − σ2
1/2

)

t+ σ1W1(t),

and where U(t) is a two-state Markov chain that takes values in the set {0, 1} with state

transition rates given by parameters λ01 and λ10. The probability that the current state is

regime 0 is given by the parameter p. Denoting the characteristic functions of the individual

lognormal processes at unit time (t = 1) as φ0 and φ1 (see equation 4), the characteristic

function of the regime switching lognormal process is given by

φX(t) (u) = φ0 (u)t g

(

ln

(

φ0 (u)

φ1 (u)

))

, (21)

where

g (λ) = pg0 (λ) + (1 − p)g1 (λ) ,

g0 (λ) = e−(η1(λ)+λ01)t × η2 (λ) + λ01 − (η1 (λ) + λ01) e
−(η2(λ)−η1(λ))t

η2 (λ) − η1 (λ)
,

g1 (λ) = (1/λ01)e
−(η1(λ)+λ01)t × η2 (λ) (η1 (λ) + λ01)e

−(η2(λ)−η1(λ))t − η1 (λ) (η2 (λ) + λ01)

η2 (λ) − η1 (λ)
,

η1 (λ) =
λ+ λ10 − λ01

2
−

√

(λ+ λ10 − λ01)2

4
+ λ10λ01,

η2 (λ) =
λ+ λ10 − λ01

2
+

√

(λ+ λ10 − λ01)2

4
+ λ10λ01.

This characteristic function is derived by recognising that the Laplace transform of the time

spent in regime 1 is known in analyical form. A detailed derivation is beyond the scope of

this paper however for more details on this derivation see Konikov and Madan (2002).

Denote τij as the time that the regime switches from state i to state j. Given that the

current state is i, the probability of remaining in state i and not switching to state j over

the time period (0, t) is given by

Pr {τij > t} = exp(−λijt), for i, j ∈ {0, 1} and j 6= i.
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To reduce the number of parameters in the model we assume that the probability of switch-

ing states is equal to one minus the probability of remaining in the current state

pij = Pr {τij < t} = 1 − exp(−λijt), for i, j ∈ {0, 1} and j 6= i,

and then use Hardy (2001) to write p (the unconditional probability of being in state 0) in

terms of p01 and p10 with p = p01/(p01 + p10).

The dynamics of the stock or stock index price are defined by

S(t) = S(0) exp (X (t;µ0, σ0, µ1, σ1, λ01, λ10)) . (22)

It should be noted that unlike the other models used in this paper the growth rate of

the stock in the real world measure is not explicitly modelled as µ but is a function of

the model parameters µ0, σ0, µ1, σ1, λ01, and λ10. This is to ensure that the model is

comparable to other regime switching lognormal processes used in the literature such as

Hardy (2001). The mean of the RSLN process can be derived from the characteristic

function with E[X (t)] = 1
i

∂φX(t)(u)

∂u
|u=0.

2 The risk neutral dynamics of the stock or stock

index price are defined by

S(t) = S(0) exp ((r − q + ω∗ (t)) t+X (t;µ∗0, σ
∗

0, µ
∗

1, σ
∗

1, λ
∗

01, λ
∗

10)) , (23)

where in this paper we imply the risk neutral parameters from market option prices and

allow them to be different from their real world counterparts. By using the above form for

the risk neutral process a constraint is implicitly imposed on the risk neutral parameter

vector {µ∗0, σ∗0, µ∗1, σ∗1, λ∗01, λ∗10} so that the risk neutral growth rate of the stock price is r−q
i.e. EQ

0 [S(t)] = S(0)e(r−q)t.

3 Time series data and estimation methodology

In this section the LN, VG and VGSSD and RSLN models are are estimated using monthly

total returns data on the TSE 300, the S&P 500 and the FTSE 100. The data on the

TSE 300 and the S&P 500 span the dates from 31/01/1956 to 31/12/1999 so that results

are comparable to Hardy’s (2001) results. The models are also estimated using FTSE 100

total returns from 31/01/1986 to 29/12/2006. The parameters of the models are esimated

2In fact all the moments can be derived from the knowledge of the characteristic function since E[X(t)n] =
1
in

∂nφX(t)(u)

∂un |u=0. However the moments of the RSLN are not reported as they are take up too much space.
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using an approximate maximum likelihood estimation (MLE) method similar to the one

used by Carr, Geman, Madan and Yor (2002). For a given parameter vector the density

function of the stochastic process is calculated at N points y1, y2, . . . , yN (where N = 214)

over a finite range by inverting the characteristic function with the use of a fast Fourier

transform (FFT)3. Given m observed data points CGMY (2002) arrange this observed data

xi for i = 1, . . . ,m into their corresponding intervals xi ∈ [yj , yj+1] for j = 1, . . . , N −1 and

count the number of observed data points that fall into each interval (in many cases this is

zero). The likelihood of observing this binned data is then maximised by appropriate choice

of the parameter vector. This method involves a form of smoothing where a histogram

of the data is evaluated. However rather than binning the observed data the approach

taken in this paper is to evaluate the density function at the observed data points, f(xi)

for i = 1, . . . ,m, by interpolation where f (xi) is interpolated using its 2k + 1 nearest

neighbours: f(yj−k), f(yj−k+1), . . . , f(yj+k). The loglikelihood function of this interpolated

density function is then maximised by appropriate choice of the parameter vector. This

method can be compared to the standard maximum likelihood approach (that uses the

closed form density function) however the approximate method introduces interpolation

error and the loglikelihood values from the approximate method and the standard MLE

method will not be exactly the same.

The parameter values of the LN, VG, VGSSD and the RSLN models for the TSE

300, the S&P 500 and the FTSE 100 data are shown in Table 1. The LN, VG and VGSSD

models have similar instantaneous drift and volatility parameters in all cases. The volatility

parameter in the VG model is always a little lower than the volatility parameter in the LN

model. This is because the standard deviation of the VG process is attributable to the

three parameters {σ, ν, θ}. In the VG model the parameters ν and θ are similar across the

different markets with ν ≈ 0.03 to 0.05 and θ ≈ −0.17 to − 0.20. The VGSSD model has

a larger ν parameter and a smaller θ parameter than the V G model. This is because the

VGSSD random variable at time t is equivalent to a scaled VG random variable at unit

time, thus to induce similar levels of skewness and kurtosis as those in the VG model the

moments in the VGSSD model need to have a higher ν and a lower θ. The γ parameter

in the VGSSD model is always close to 0.5 which is what one expects if markets are very

nearly efficient since the variance of the returns grow proportional to time t when γ = 0.5.

The parameter values of the RSLN model are very different from the other three models

3See appendix on how to invert the characteristic function to obtain the density function.
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Model parameters

LN,VG and VGSSD µ σ ν θ γ

RSLN µ0 σ0 µ1 σ1 λ01 λ10

TSE 300 (1956 - 99 Monthly Total Returns)

LN 0.0610 0.1561 - - -

VG 0.0605 0.1482 0.0409 -0.2005 -

VGSSD 0.0605 0.1685 0.4912 -0.0658 0.5516

RSLN 0.1708 0.1199 -1.2320 0.4372 2.0771 74.5509

S&P 500 (1956 - 99 Monthly Total Returns)

LN 0.0695 0.1436 - - -

VG 0.0697 0.1376 0.0340 -0.1767 -

VGSSD 0.0692 0.1463 0.3767 -0.0672 0.5271

RSLN 0.2341 0.0842 -0.2212 0.2558 12.8848 61.8610

FTSE 100 (1986 - 2006 Monthly Total Returns)

LN 0.0673 0.1609 - - -

VG 0.0666 0.1493 0.0547 -0.2072 -

VGSSD 0.0666 0.1301 0.6560 -0.0521 0.4447

RSLN 0.1488 0.1370 -0.0149 0.3948 0.0203 0.3974

Table 1: Comparison of parameters for the lognormal, variance gamma, variance gamma

scaled self-decomposable and regime switching lognormal processes.

which is not surprising given that the RSLN model is based a different paradigm than the

other three models. The results for the RSLN model can be interpreted in a consistent

manner across the different markets. There is a low volatility regime with a positive drift

and a high volatility regime with a negative drift and the process switches out of the high

volatility regime very quickly relative to the low volatility regime. What is surprising is the

results for the TSE data where the high volatility regime has a very large negative return

of -123.2%! However the probability of remaining in this regime for a length of period t is

equal to e−74.5509t = 0.2% for t = 1/12. Thus although this regime has a very large negative

drift the probability of switching out of this regime is very large.

The maximum likelihood results for the three markets: TSE 300, S&P 500 and FTSE

100 are shown in Table 2. Similar to Hardy (2001) the following results are reported: the

14



log likelihood function (LL), the Schwartz-Bayes information criteria (SBC), the Akaike

information criteria (AIC) and the likelihood ratio test (LRT) versus the LN model. The

loglikelihood method selects the model with the maximum value for LL. In the interests of

parsimony the AIC selects the model with the maximum value for LL − n where n is the

number of parameters in the model. This captures in an ad-hoc fashion the fact that each

additional parameter of the model should contribute at least one unit to the loglikelihood

value. The SBC selects the model with the maximum value for LL − 1
2n lnm, where n

is the number of parameters and m is the number of observed data points with m = 527

for the TSE 300 and the S&P 500 and m = 252 for the FTSE 100. For a sample size of

527 (252) each additional parameter must increase the loglikelihood value by at least 3.13

(2.76). This is a more formal information criteria than the AIC and puts more weight on

parsimonious models than the AIC. The likelihood ratio compares embedded models where

a model with n1 parameters is a special case of a model with n2 parameters where n2 > n1.

Under the null hypothesis that there is no improvement under model 2 the test statistic

2(LL2 −LL1) has a χ2 distribution with degrees of freedom equal to n2 −n1. In this paper

the LN is a special case of the VG model (when ν → 0), but the LN and VG are not special

cases of the VGSSD model. Also the LN model is a special case of the RSLN. However

even for models that are not imbedded the likelihood ratio test can still be used for model

selection although the χ2 is an approximation for the true distribution of the test statistic.

It is clear that all three of the VG, VGSSD and RSLN models provide a better fit

according to all three measures (Log-likelihood, Schwartz-Bayesian Criterion and Akaike

Information Criterion). VG and VGSSD models are a marginally better fit to S&P 500 and

FTSE 100 data on the Log-likelihood measure and the benefit of their greater parsimony

is clearly relative to the RSLN model from the SBC and AIC criteria.

4 Tail Behaviour of Models

Risks inherent in particular investment strategies will often be assessed by looking at per-

centiles of outcomes - either absolute in the sense of a distribution of asset returns per se or,

more likely, the distribution of asset returns relative to movement in underlying liabilities

- which effectively amount to use of a ’Value-at-Risk’ metric. This quantile measure of

risk has many problems which are well documented (see for example Artzner et al 1999)

and awareness of these shortcomings often leads to use of the Conditional Tail Expectation
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Model Number of parameters LL SBC AIC LRT (p-value)

TSE 300 (1956 - 99 Monthly Total Returns)

LN 2 885.64 879.37 883.64

VG 4 912.67 900.13 908.67 5.32e-009

VGSSD 5 912.67 897.00 907.67 5.32e-009

RSLN 6 914.23 895.43 908.23 5.32e-009

S&P 500 (1956 - 99 Monthly Total Returns)

LN 2 929.76 923.49 927.76

VG 4 948.92 936.39 944.92 5.32e-009

VGSSD 5 948.92 933.26 943.92 5.32e-009

RSLN 6 948.54 929.74 942.53 5.32e-009

FTSE 100 (1986 - 2006 Monthly Total Returns)

LN 2 415.93 410.40 413.93

VG 4 436.39 425.33 432.39 5.32e-009

VGSSD 5 436.39 422.57 431.39 5.32e-009

RSLN 6 432.09 415.50 426.09 5.32e-009

Table 2: Comparison of selection information for the lognormal, variance gamma, variance

gamma scaled self-decomposable and regime switching lognormal processes.
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p-value

Model 10 5 2.5 1

TSE 300 (1956 - 99 Monthly Total Returns)

LN -6.02 -38.63 -44.88 -38.73

VG 7.99 -16.71 -20.87 -16.8

VGSSD 7.99 -16.71 -20.87 -16.8

RSLN 3.52 -18.94 -19.93 -13.68

S&P 500 (1956 - 99 Monthly Total Returns)

LN 7.62 -25.87 -33.15 -28.66

VG 15.37 -11.17 -16.5 -13.49

VGSSD 16.69 -10.27 -15.95 -13.24

RSLN 12.62 -12.48 -17.2 -14

FTSE 100 (1986 - 2006 Monthly Total Returns)

LN -9.03 -22.14 -24.46 -22.76

VG 0.79 -8.11 -9.26 -8.05

VGSSD 0.78 -8.11 -9.26 -8.05

RSLN -3.94 -13.16 -11.85 -8.39

Table 3: Comparison of loglikelihood fit of the lognormal, variance gamma, variance gamma

scaled self-decomposable and regime switching lognormal processes for tail distribution of

data.

(CTE) measure, defined as the expected value of the loss given that the loss falls beyond a

specified quantile of the distribution.

Given the importance of VaR and CTE for decision-making purposes, it is interesting

to compare how well the tail of each model fits observed data and to examine differences

in implied VaR and CTE over different time horizons.

As a first step in trying to gauge the overall goodness of fit of each distribution to

the tail of the observed time series data, Table 3 repeats the Log-likelihood test for each

distribution but in this case the likelihood function is summed across only those observations

falling within the percentile shown.

The VG, VGSSD and RSLN models are a much better fit to the tail of the observed data

at all significance levels. At the 10% and 5% levels for TSE data, both VG and VGSSD
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p-value

Model 10 5 2.5 1

TSE

LN -0.0484 -0.0639 -0.0771 -0.0922

VG -0.0466 -0.0677 -0.0876 -0.1125

VGSSD -0.0466 -0.0677 -0.0876 -0.1125

RSLN -0.0431 -0.0633 -0.0869 -0.1224

S&P 500

LN -0.0424 -0.0567 -0.0689 -0.0829

VG -0.0406 -0.0594 -0.0769 -0.0988

VGSSD -0.0414 -0.0603 -0.078 -0.1

RSLN -0.0394 -0.0585 -0.0764 -0.0984

FTSE 100

LN -0.0492 -0.0651 -0.0787 -0.0943

VG -0.0466 -0.0697 -0.0917 -0.1195

VGSSD -0.0466 -0.0697 -0.0917 -0.1195

RSLN -0.0417 -0.058 -0.0745 -0.1047

Table 4: Comparison of quantile risk measures of the lognormal, variance gamma, variance

gamma scaled self-decomposable and regime switching lognormal processes.

models provide the best fit while at the 2.5% and 1% levels the RSLN model is ahead. For

S&P 500 and FTSE100 data, the VG and VGSSD models provide the best fit across all all

four tail sections.

The impact of the better fit to observed tail data for the VG, VGSSD and RSLN models

is clear from the Value-at-Risk figures in Table 4 and Conditional Tail Expectation (CTE)

figures in Table 5 where risk exposures are all materially understated by a LN assumption.

Figures 3 to 5 show the segment of the CDF for each fitted distribution up to the 10th

percentile. In all cases the CDF has been calculated numerically from the PDF derived

as the inverse Fourier transform of the characteristic function for each distribution. The

parameters being considered were fit based on monthly return data and used to derive a

corresponding CDF over periods ranging from 1 month to 10 years.

While the VG starts with an identical fit to the VGSSD at one month, as expected, both
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p-value

Model 10 5 2.5 1

TSE 300 (1956 - 99 Monthly Total Returns)

LN -0.0683 -0.0811 -0.0924 -0.1057

VG -0.0756 -0.0953 -0.114 -0.1376

VGSSD -0.0756 -0.0953 -0.114 -0.1376

RSLN -0.0754 -0.0989 -0.1247 -0.1589

S&P 500 (1956 - 99 Monthly Total Returns)

LN -0.0608 -0.0727 -0.0832 -0.0956

VG -0.0663 -0.0837 -0.1001 -0.1209

VGSSD -0.0673 -0.0847 -0.1012 -0.1221

RSLN -0.0655 -0.0828 -0.0993 -0.1195

FTSE 100 (1986 - 2006 Monthly Total Returns)

LN -0.0697 -0.0828 -0.0945 -0.1081

VG -0.0787 -0.1004 -0.1212 -0.1479

VGSSD -0.0787 -0.1004 -0.1212 -0.1479

RSLN -0.0689 -0.089 -0.1124 -0.1529

Table 5: Comparison of conditional tail expectations of the lognormal, variance gamma,

variance gamma scaled self-decomposable and regime switching lognormal processes.
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Figure 3: Implied tail distribution for TSE fit over various time horizons

its negative skewness and excess kurtosis are seen to decrease rapidly across all three fits

such that from 36 months onwards it is hard to discern any difference between the graphs

for VG and LN. As expected, the VGSSD model preserves both skewness and kurtosis

independent of time horizon.

5 Option Pricing

In this section the models are measured on their ability to reproduce a large number of

options across different strike prices and maturities on a given day. All the models used in

this paper are one-dimensional Markov models. It is not possible to reproduce the dynamics
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Figure 4: Implied tail distribution for S&P fit over various time horizons
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Figure 5: Implied tail distribution for FTSE fit over various time horizons
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Figure 6: Plot of implied volatilities on the FTSE 100 index on the 11th January 2007.

of the implied volatility surface4 using such models as the data generating process. However

it may be possible to reproduce the average shape of the implied volatility surface over time5

which may be useful for actuarial modelling when one is dealing with long time periods and

still needs to model certain option properties such as, for example, the fact that out-of-the

money put options are more expensive, relative to Black-Scholes model, than out-of-the-

money call options. Models that can reproduce the average shape of the implied volatility

surface may prove useful in simulating future scenarios for the underlying asset and using

the simulated future underlying asset price and the risk neutral parameters of the model to

generate a realistic set of future option prices written on the underlying asset. Rather than

test a models ability to reproduce an average implied volatility surface we test the models

ability to reproduce the implied volatility surface on a given day. This is a more difficult

test because the average surface will be smoother than the surface on a given day. Figure

6 depicts the implied volatility surface on the 11th January 2007 for the FTSE 100 index.

With the exception of the lognormal model the other models used in this paper result in

an incomplete market where an individual option cannot be replicated by dynamic hedging

in the underlying asset and a risk-free bond. A partial equilibrium approach is followed in

this paper where the price of the option is determined relative to the underlying asset and

4The grid of implied volatilities plotted against strike price and maturity.
5This is where we take the observed implied volatility surface over a period of time, interpolate it so we

observe implied volatilities on a fixed grid of maturity and moneyness (strike/spot) and then average these

implied volatilities over different dates.
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it is assumed that the growth rate of the asset in the risk neutral world is equal to the risk

neutral growth rate r−q. The risk neutral parameters are then implied from market option

prices and are allowed to differ from their real-world counterparts. Thus the risk neutral

parameters will reflect the risk premia implicit in option prices that is partly caused by the

lack of hedging perfection.

The option pricing method used is the fast Fourier transform method of Carr and

Madan (1999). This method only needs knowledge of the characteristic function and it

returns option prices at a range of different strike prices with one application of a FFT

using the following formula

c (K,T ) =
exp (−α ln (K))

π

∫ +∞

0
exp (−iv ln (K))ψ (v) dv (24)

where

ψ (v) =
exp (−rT )φln S(T ) (v − (α+ 1) i)

α2 + α− v2 + i (2α+ 1) v
(25)

and where φln S(T ) is the model specific characteristic function of the log stock price such

as that given in equation 10 for the VG process but with the real world growth µ replaced

by the risk neutral growth rate r − q.

5.1 Data

FTSE 100 index futures options are used to measure the calibration performance of the

models in the paper. The data consists of a range of options at different strike prices and

maturities on the 11th January 2007. See Table 6 for more details on the data.

The models are calibrated to this implied volatility surface data. A number of filters are

run on the market option prices to be used in the calibration. Option prices that are less

than 0.00075 ·S, where S is the underlying price, are discarded, and options with maturities

less than 15 days are also discarded due to these options being less liquid. Put prices were

used for strike prices less than the underlying price (for K < S), and call prices were used

for strike prices greater than the underlying price (for K > S). Thus we always used out-

of-the money options in the calibration. Madan, Carr and Chang (1998) show that the

maximum likelihood estimates of the risk neutral parameters is asymtotically equivalent to
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Strike Price

Maturity 4361.1 4984.1 5607.1 6230.1 6853.1 7476.1 8099.1

0.2464 23.1075 18.1155 13.2689 10.6758

0.4956 24.8123 21.1118 17.5112 13.9434 11.4142

0.7474 23.4625 20.3828 17.4050 14.4166 12.0056 10.8380

0.9993 22.7376 20.0367 17.4393 14.8219 12.5523 11.2521

2.0041 21.4760 19.5455 17.6994 15.8239 14.0378 12.7362 11.8584

3.0007 21.5998 19.8901 18.2535 16.6540 15.1302 13.9227 13.0156

4.0000 21.8114 20.2893 18.8318 17.4236 16.0754 14.9535 14.0707

4.9993 22.0970 20.7352 19.4266 18.1627 16.9454 15.8935 15.0431

6.0014 22.4530 21.2231 20.0342 18.8830 17.7701 16.7770 15.9596

7.0062 22.8335 21.7255 20.6456 19.5953 18.5770 17.6475 16.8707

8.0027 23.1125 22.0918 21.0888 20.1088 19.1550 18.2681 17.5176

8.9993 23.3319 22.3784 21.4342 20.5075 19.6024 18.7476 18.0167

10.0014 23.5652 22.6761 21.7918 20.9215 20.0696 19.2568 18.5527

Table 6: Market BS implied volatilities (%) for FTSE 100 index options on the 11 January

2007. The strike prices and maturities (in years) are given in the table and the other

observable inputs are S = 6230.1, r = 0.0521 and q = 0.0306.
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minimising the following objective function

f =

√

√

√

√

1

N

N
∑

1

(lnCi − lnCi (Θ))2,

where Ci is the observed market price on the i-th option and Ci (Θ) is the model price of the

i-th option with parameter vector Θ. However this approach seems to put a lot of emphasis

on out-of-the money options at the expensive of fitting at-the-money options. Thus in this

study we minimise the average absolute percentage error (AAPE) which is given by

f =
1

N

N
∑

1

∣

∣

∣

∣

Ci − Ci (Θ)

Ci

∣

∣

∣

∣

.

In fact when the market and model prices are very close lnCi − lnCi (Θ) ≈ Ci−Ci(Θ)
Ci

and

these objective functions are very similar. Table 7 contains estimates of the risk neutral

parameters as of the 11th January 2007, along with the calibration performance of each

model given by the AAPE in the last column. Figures 7 - 9 depict the calibration perfor-

mance of the VG, VGSSD and RSLN models by graphing model implied volatilities and

market implied volatilities for a range of different moneyness levels (strike price/underlying

price) and maturities. As can be seen both the VGSSD and RSLN models have the best

performance with the RSLN being slighly better but at the expense of two more parameters.

The calibration performance of these two models is very good given the range of different

option prices that are tested. This evidence suggests that the VGSSD and RSLN models

seem reasonable good models to use if one requires the model to be able to reproduce the

shape of the implied volatility surface in a reliable manner.

6 Conclusion

A number of different stochastic processes suitable for long term modelling of underlying

asset prices and option prices are tested in the paper using knowledge of the characteristic

function. Based on evidence from time series data, in particular the tails of the data, and

evidence from options prices the VGSSD and the RSLN models seem to do reasonably well

on all tests. The RSLN model is a well known model in the actuarial literature, but perhaps

the use of a continuous time Markov process to drive the switching process is less common

and this is introduced in this paper. The VGSSD model is a more recent model that is less
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Risk neutral model parameters AAPE (%)

LN,VG and VGSSD µ∗ σ∗ ν∗ θ∗ γ∗

RSLN µ∗0 σ∗0 µ∗1 σ∗1 λ∗01 λ∗10

LN - 0.1495 - - - 45.54

VG - 0.1205 0.6870 -0.1439 - 20.89

VGSSD - 0.1182 0.5668 -0.1628 0.6372 8.93

RSLN 0.1634 0.0832 0.0090 0.2141 0.0525 0.1364 8.73

Table 7: Comparison of risk neutral parameters for the lognormal, variance gamma, vari-

ance gamma scaled self-decomposable and regime switching lognormal processes based on

calibration to FTSE 100 Index options on the 11th January 2007.
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Figure 7: Market and VG implied volatilities versus moneyness for a number of different

option maturities on 11th Jan 2007 for FTSE 100 index options.
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Figure 8: Market and VGSSD implied volatilities versus moneyness for a number of different

option maturities on 11th Jan 2007 for FTSE 100 index options.
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Figure 9: Market and RSLN implied volatilities versus moneyness for a number of different

option maturities on 11th Jan 2007 for FTSE 100 index options.
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well known and seems to perform just as good as the RSLN model however further more

detailed testing is needed before more rigorous conclusions can be reached. Further research

includes the analysis of options data over different time periods and different markets and

the inclusion of more detailed time series and tail tests.
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