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The origins and prehistory of domestic sheep (Ovis aries) are incompletely understood; to address this,
we generated data from 118 ancient genomes spanning 12,000 years sampled from across Eurasia.
Genomes from Central Türkiye ~8000 BCE are genetically proximal to the domestic origins of sheep but
do not fully explain the ancestry of later populations, suggesting a mosaic of wild ancestries. Genomic
signatures indicate selection by ancient herders for pigmentation patterns, hornedness, and growth rate.
Although the first European sheep flocks derive from Türkiye, in a notable parallel with ancient human
genome discoveries, we detected a major influx of Western steppe–related ancestry in the Bronze Age.

N
umbering 1.2 billion worldwide (FAO,
2020), sheepwere initially domesticated
from the Asiatic mouflon (Ovis gmelini),
which ranged from Türkiye to eastern
Iran (1–3). Along with meat, skin, and

fat, their lifetime (secondary) products, includ-
ing milk (4) and dung (5), have played a major
role in human societies. Wool, in particular,
was a sought-after commodity and newly dis-

covered source of warm, breathable, water re-
sistant textiles, which was intertwined through
the economiesof early complex societies in fourth
to third millennium BCE Southwest Asia and
later in Bronze Age Europe (6, 7).
The origins of sheep management and hus-

bandry can be traced to themid–ninthmillenni-
umBCE in thenorthern Fertile Crescent. Among
Early Neolithic sites in the upper Euphrates

basin and Central Türkiye, faunal remains re-
veal the emerging new relationship between
humans and sheep through shifts in species
composition, age profiles, diet, the occurrence of
bone pathologies, evidence of fetal and neonatal
deaths on site, and progressive size reduction
compared with earlier hunted assemblages
(8–11).Onemillenniumlater, caprinepastoralism
was consolidated more widely across Southwest
Asiawith smaller, phenotypically domestic sheep
populating landscapes well beyond the natural
distribution of wild sheep (12–14).
To investigate the origins, dispersal and de-

velopment of sheep, we analyzed 118 newly
sequenced ancient sheep genomes spanning
12,000 years ( F1Fig. 1A) with a mean coverage
of 0.85X (~0.01X to 5.38X; figs. S2 and S3 and
tables S1 to S5), supplemented with five pub-
lished ancient genomes (15, 16). Their geographic
range stretches from Mongolia to Ireland (fig.
S1), with a particular focus on Southwest Asia
(N = 70 xxx) (Fig. 1B). We analyzed these with
73 modern Ovis genomes (table S4), includ-
ing 57 domestic Ovis aries from Asia, Europe,
and Africa; 12 O. gmelini from Iran; and 4
Iranian urials (Ovis vignei).

Ancient wild genomes point away
from domestication in the east of the
Fertile Crescent

Eight of our ancient genomes are from wild
Ovis.Three Iranian samples fromTappeh Sang-e
Chakhmaq (~6000 BCE; Fig. 1) (17, 18) are iden-
tifiable as urial (O. vignei) by their segregation
with modern urials in principal components
analysis (PCA; PC3 in fig. S4 and table S6), D
statistics (fig. S5 and table S7), and their mito-
chondrial DNA (mtDNA) sequences (fig. S6
and table S1). Four specimens with genomic af-
finity with wild Eurasian mouflon (O. gmelini;
fig. S4) derive Nachcharini Cave (Lebanon)
and Körtik Tepe (Türkiye), dating to mid-10th
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millennium BCE. Both assemblages lack demo-
graphic indicators of management (13, 19) and
predate evidence of sheepmanagement (2, 20). A
final wild mouflon genome is from ~8000 BCE
Ganj Dareh (Iran), where sheep (in contrast
to contemporaneous herded goats) show a
demographic profile typical of hunted pop-
ulations (21). In PCA, when we project our an-
cient data on a framework of modern sheep

and wild Ovis genomes (Fig. 1C, fig. S4, and
tables S3 and S4), these ancient wild samples
clearly separate from those representing man-
aged, domestic assemblages on PC1; this, along
with other analyses, were tested for robustness
with respect to sequencing error and selection of
variant sites (22).
Among the ancient wild sheep (Fig. 1, B and

C), those which plot closest to domesticates on

PC1 are the three more western mouflon ge-
nomes from Nachcharini Cave in Lebanon
(~9700 to 9000 BCE), followed by those from
Körtik Tepe [2s (s, standard deviation) C14

age: 9873 to 9453 BCE] in Southeast Türkiye,
and then Ganj Dareh (2s C14 age: 8279 to
7960 BCE) in the Iranian Zagros toward the
eastern side of the wild Ovis range (Fig. 1C).
This hierarchywithinwild versus domesticated
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Fig. 1. Provenance and principal components analysis of 123 ancient wild and
domestic sheep genomes (118 reported in this study) projected onto modern
Ovis diversity. (A) Approximate sample date plotted versus (jittered) longitude
[corresponding to positions in (B)]. Symbols with dots indicate ancient wild
genomes. (B) Provenance and cultural period of sampled genomes. (C) Plot of PC1
and PC2 with symbol and color key as in the map; clear separations between hunted

wild (samples from Tappeh Sang-e Chakhmaq, Ganj Dareh, Körtik Tepe, and
Nachcharini Cave) and human-managed sheep and also between eastern and
western locations are visible. The “Eastern cluster” designation encompasses ancient
sheep from Georgia, Iran, Azerbaijan, Uzbekistan, Kyrgyzstan, and Mongolia. (D) Plot
of PC1 and PC2 calculated with modern wild genomes removed, which shows
geographic separation by continent. Cal, xxx; C., central; E., eastern.
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affinity is supported by identity-by-state phylo-
genetic analysis, where the Lebanese mouflon
form the closest ancient outgroup to all domes-

ticate genomes, and Ganj Dareh, the most dis-
tant (fig. S6). Additionally, later Iranian domestic
sheep cannot be modeled (qpWave; table S10)

as stemming from the Ganj Dareh mouflon
genome. This evidence points away from a
core area of sheep domestication at the east of
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Fig. 2. Patterns of Neolithic sheep diversity. (A) The groupings of Neolithic
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tree based on IBS data of ancient and modern Ovis. Asikli Hoyuk sheep are
basal to all later domesticates. The Late Neolithic Türkiye sample grouping
apart from others (Marmara8) is an outlier with regards to eastern ancestry (see
Fig. 3B). Neolithic East refers to genomes from ~6000 BCE Iran, Azerbaijan,
Georgia, and Kyrgyzstan, highlighted in purple in (C). The outgroup goat
is not shown, and a clade of modern Iranian mouflon is collapsed; see fig. S9

for individually labeled phylogeny. Pie10 and Pie11 were excluded owing
to higher sequencing error rates (table S1). (C) Comparative plots of diversity
among Neolithic groups using within-group pairwise IBS distance. (D) Error-
corrected D statistics testing whether the pairing of Early Neolithic Central
Turkish (Aşıklı Höyük) and individuals from Late Neolithic (~6000 BCE)
sites retains integrity when ancient wild sheep groups are considered as
introgressors; group level tests are presented in table S7, and tests with Aşıklı
individuals, in fig. S16.
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the mouflon range in the Zagros and accords
with an origin in the western range of south-
west Asia. It also alignswith the archaeofaunal
record evidencing that domestic sheep pheno-
types and management occurred later in that
region, around 7000 BCE (12, 23). By contrast,
by around 8000BCE, goats in Iran had already
begun a demographic and genetic transition
toward the domesticated state (21), indicating
uncoupled early domestication processes in
the two small livestock species in the eastern
arc of the Fertile Crescent.

Early Neolithic Aşıklı Höyük are a basal
population but do not fully represent
domestic ancestry

PC1 also distributes samples of herded popu-
lations in order of archaeological age (Fig. 1C),

stretching from Early Neolithic Aşıklı Höyük
(8300 to 7500 BCE) through later Neolithic
genomes (F2 Fig. 2A) and subsequent periods to
medieval and, lastly, modern genomes. The
Aşıklı Höyük genomes, represented by a mix-
ture of shotgun andwhole-genome enrichment
data (we restrict key analyses to shotgun data
only), are from close in time to the beginnings
of sheep domestication. There, herd manage-
ment is reflected in the culling of youngmales,
slaughtering near habitations, and accumula-
tion of dung and urine in sediments, indicating
the stabling of livestock on site (8, 24). However,
sheep at this time did not yet have the reduced
size and altered morphology typical of later
domesticates (25). When we modeled the an-
cient sheep phylogeny using either individuals
with identity by state (Fig. 2B and fig. S9) or

admixture graph exploration with genomes
grouped into the major geographic-temporal
PCA clusters ( F3Fig. 3A, figs. S10 to S15, and
tables S8 and S9), AşıklıHöyük holds a basal
position among domesticates [inferred by
using shotgun but excluding genome-enriched
sequencing data (22)]. This is consistent with
that population being genetically proximal to
the origins of domestic sheep.
However, our Late Neolithic samples (here

defined as ~6000 BCE) are likely not a simple
derivation of this early Central Turkish diver-
sity.D statistics with either the wild Ganj Dareh
or Nachcharini sheep as outgroups to test the
integrity of AşıklıHöyük–LateNeolithic genome
clade pairings point toward the latter having a
broader wild ancestry than the flocks raised at
Aşıklı Höyük (Fig. 2D and fig. S16; although
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tests with different Asikli individuals produce a
mixture of positive, indeterminate, and negative
results, fig. S17). Moreover, these later populations
cannot be modeled as deriving from the Aşıklı
sheep alone (by using qpWave to evaluate the
fit of single ancestry streams, table S10). This
could arise from local wild genomes being in-
corporated in their population histories after
a common origin (26). Alternatively, a broader
mosaic of wild diversity gave rise to the foun-
der herds, not all of which are represented in
our AşıklıHöyük sample. Genomic sampling
of additional ninthmillennium BCE assemb-
lages within the natural habitat of the mou-
flon, including from the Northern Levant
and upper Euphrates basin in the center of
the Fertile Crescent, would distinguish these
scenarios.

Migrations and admixture shaped ancient
sheep populations

In PC space, western Neolithic sheep appear
highly structured (Fig. 1C). There are distinct
clusters of genomes deriving from Turkish and
EuropeanNeolithic sites. By contrast, ~6000BCE
Neolithic sheep genomes which are geograph-
ically dispersed amongGeorgia, Azerbaijan, east-
ern Iran and Kyrgyzstan sites (15) cluster tightly
genetically; we refer to this group as “Neolithic
East” in subsequent analyses. Relative homo-
geneity of these eastern genomes is supported
by pairwise identity-by-state (IBS) values (Fig. 2C)
and a cladal relationship (along with Chalcolithic
Iran) in an IBS-based phylogeny (Fig. 2B).
When we calculated PC1 and PC2 without

modern wild genomes, three poles of variation,
marked by trends in ancient and modern Euro-
pean, Asian, and African animals (Fig. 1D), be-
came apparent. Ancient Turkish sheep trend
toward the European pole, Iranians toward
the Asian population, and, although less pro-
nounced, medieval genomes from Israel toward
Africans, implying roles in the foundations of
the respective continental herds. Supported by
D statistics and qpAdmmodeling (fig. S18 and
tables S7 and S11), these separate continental
affinities of the three corners of the Fertile
Crescent have parallels in ancient goat and
cattle genomes (27, 28). However, there are
additional complexities in the trajectories of
these sheep populations.
To explore the role of gene flow in the devel-

opment of ancient sheep, we explored phyloge-
netic relationsusing admixture graphexploration
and Treemix (fig. S12) and constructed a sum-
mary schema (Fig. 3A). This retained the most
frequent features within best-fitting solutions
[(22); tables S8 and S9] and explicitly mod-
eled inferred population mixtures with qpAdm
(Fig. 3B and table S11). The primary divide in
the Late Neolithic (~6000 BCE) and subsequent
periods is between east and west (Figs. 1, C and
D, and3A). The earliest admixture between these
involves sheep from Late Neolithic Yenikapı

on the western shore of the Bosphorus, show-
ing additional minor eastern ancestry rela-
tive to neighboring sheep populations (qpAdm:
17 to 20% with one outlier, Marmara8, at 53 ±
16%; fig. S19 and table S11). LateNeolithic Turkish
populations have been noted to exhibit reduced
mtDNA diversity, which is modeled as the re-
sult of a population bottleneck occurring as
founder flocks migrated from the region of
domestication (29, 30). mtDNA diversity does
not similarly decline in the Neolithic East (table
S1). Although we saw reduced autosomal diver-
sity (assessed as levels of pairwise allele sharing;
Fig. 2C) in the Neolithic European and East-
ern populations, this was not the case in our
Late Neolithic Turkish sheep. This contrast
between maternal and whole genome pat-
terns may be at least partly explained by sec-
ondary directional admixture (mediated largely
by choice of sires), which, in herded stock, can
leave mtDNA diversity unchanged (28). There
were distinct routes and events during disper-
sal from the initial domestication region through-
out coastal and inland Türkiye (26, 31), with
likely ongoing exchange of animals within
Neolithic Southwest Asia.
We found little evidence of discontinuity after

the foundation of the eastern population: sheep
from the Chalcolithic and later periods can be
modeled entirely by the Neolithic East group
(qpWave, table S10) according with their close
clustering in PCA and despite a wide geograph-
ical provenance. Conversely, both the European
and Central Turkish Chalcolithic show differ-
ences relative to their Neolithic counterparts,
clearly indicated by D statistics (Fig. 3B and
figs. S19 to S23) and unsupervised ancestry
modeling (fig. S24). Within central Türkiye, in a
discontinuity with Neolithic genomes, Chalco-
lithic Güvercinkayası sheep are amix of western
and eastern ancestry (57 to 70%, from all fitting
group-level qpAdmmodels with a range of possi-
ble eastern sources; table S11). AtGüvercinkayası,
decorated pottery, stamped seals, and seal im-
pressionspoint to connections toMesopotamian
Ubaid culture sites (32), which were known to
practice large-scale, mobile sheep pastoralism
(33). Notably, the signals of east-to-west gene
flow in Southwest Asian sheep have resonance
with a wider recurring pattern of westward
movements from the Caucasian, Iranian, or
northern Mesopotamian cultural sphere that is
paralleled in both material culture and human
genetics (34). Substantial Iranian or Caucasus
ancestry influx into Anatolian and Mediterra-
nean human populations also occurred in the
Chalcolithic and has been postulated to cor-
relate with the spread of Anatolian languages
basal to Indo-European tongues (35). Eastern
input extends into Southeast European Chal-
colithic sheep (18.7 to 32.3% for best-fittingmod-
els, but qpAdm allows several possible sources;
table S11), according with multiple postulated
cultural shifts between the Early Neolithic

Starčevo horizon (represented here by the
Blagotin assemblage, Fig. 2A) and the Chal-
colithic period [fig. S1, (36)].

Steppe-related sheep migration to Europe

The most dramatic east to west genome intro-
gression, both in distance traversed and extent
of influence, is that which transformed Bronze
Age and subsequent European sheep. Super-
vised ancestry modeling, likelihood-based graph
exploration [Treemix (37); figs. S12 to S15), and
D statistics (Fig. 3B; variation in D scores were
observed by using individual Neolithic European
sheep rather than groups; see fig. S21 and table
S6) favor Late Bronze Age sheep sampled from
the Russian Volga–Ural steppe as the best-fitting
source. With qpAdm, we estimate that that 44
to 61% of the individual ancestry of European
sheep fromtheBronzeAgeonwardsderives from
Western steppe–related admixture (Fig. 3C). Post-
Neolithic translocations of steppe sheep into
Europe fit studies ofmoderngeneticmarkers (38)
and are hinted at by ancient mtDNA data (39).
One of the most substantial findings from

ancient human genomics is strong evidence for
amassive steppe-derived population turnover in
Europe around 3000 to 2700 BCE (40, 41). We
infer that, in the frame of this cultural process,
sheep populations were transformed by a trans-
location from the steppe into central and west-
ernEuropeby themid–secondmillenniumBCE.
This was likely motivated by the lifeways and
dietary preferences of the thirdmillenniumBCE
Yamnaya culture, i.e., primarily sheep-herding,
migratory pastoralists of the Pontic-Caspian
steppe that depended on small livestock for
dairy products (42, 43).

Ancient signals of selection and sheep
production traits

To test which traits may have undergone selec-
tion inprehistory,we focused on the two clusters
of genomes in our data with the best sampling
and genome coverage (Fig. 1C): Neolithic south-
east Europe (restricted to genomes from the
~6000 BCE assemblage of Blagotin-Poljna,
Serbia) and Bronze Age–to–medieval European
sheep (pooled across assemblages dating to
~1400 BCE to ~1100 CE). We used these two
groups comprising 6 (mean 1.37X coverage)
and 13 genomes (mean 1.69X coverage) and
compared them with 17 modern wild sheep
genomes (44) to calculate pairwise xxxxxxx in
genome-wide windows. This is summarized in
population branch statistics (45) within which
we identified 50-kb windows with excessive
divergence and located these signals on the
respective trajectories of the Neolithic or post-
Chalcolithic groups (fig. S25).
On the branch leading to the ~6000 BCE

Neolithic population, it is notable that, within
the 10 most-elevated signal peaks, a majority
contain genes with prior evidence for pheno-
type consequence and/or selection history in
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modern sheep. The strongest genome-widepeak
is adjacent to the genes PDGFRA and KIT [a
locus implicated in selection and coat color,
e.g., piebaldism, in multiple species (27, 46);
fig. S25]). The fourth-ranked region contains
MC1R, which has also had variation linked to
coloration in multiple studies (47, 48). This
suggests that, within the first two millennia of
sheep husbandry and mirroring results from
ancient goat genomes (27), herders had strong
preferences for coat colors and patterns. This
may have aided identification within commu-
nally herded flocks, resulted from pleiotropy
with behavior (49), or reflected value for decora-
tionor textile production, although systemic use
of animal-based textiles does not occur until
later periods (50). Alternately, domestic animals
possess strong symbolic and aesthetic value,
and it is possible that herders simply favored
the beautiful and unusual. Other outlier Neo-
lithic signals contain genes suggesting early
selection for growth rate [GHR (51)], wool mor-
phology [SHCBP1 (52)], and climate adaptation
[TBC1D12 (53)].

Selection in later ancient Europe

By the Bronze Age, sheep began to play amore
central economic role in Europe, demonstra-
ted by the appearance of larger breeds, higher
proportions of polled (i.e., hornless) animals and
wool as a key textile and traded commodity
(54, 55). In the post-Chalcolithic European
branch, the strongest signals include RXFP2,
the major determinant of horn shape and
the polled trait (56). We did not find strongly
outlying signals associatedwith wool trait loci,
although the occurrence of several within the
top 1% of genome windowsmay concord with a
more diffuse selection process (table S12). These
include IRF2BP2, which has a 3′ untranslated
region–derived variant associated with fleece
fiber (57) that shows an increase from 50 to 91%
(P = 0.012, binomial test) between our Neolithic
European sheep and those bred in the Iron Age
and medieval periods (fig. S26).
We have shown that herds in the wool-

enriched economies of Bronze Age and later
Europe were transformed by a major influx
from theWestern steppe. Within these, we see
some indication of selection at fleece-related
genes. However, as coarse yarns continued to
be used for textiles, the adoption of wool was
probably a spatially and temporally heteroge-
neous process, rendering human exploitation
of this lifetime product more akin to an evolu-
tion than a revolution (55).
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