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The Standard Errors of Persistence
Timothy G. Conley and Morgan Kelly∗

Abstract

Many studies of historical persistence find that modern outcomes strongly reflect
characteristics of the same places in the distant past. However they rely on data that
often exhibit extreme spatial trends and autocorrelation, suggesting that their unusu-
ally large t-statistics may be due to inadequately controlling for spurious correlation.
To analyze this we introduce a new regression procedure and two diagnostic tests of
no treatment effect: (a) a placebo test where the treatment is replaced with spatial
noise and (b) a synthetic outcomes test of the hypothesis that the outcome is gener-
ated by a trend plus a spatial noise process independent of the treatment. We then
show how reliable regression results can be obtained by adding a low dimensional
spatial basis to the regression of interest, and applying a large cluster standard error
correction. Examining 30 persistence studies in leading journals we find that few ap-
proach significance at conventional levels. Our procedure applies to regressions with
spatial observations more generally and is implemented in an open source package.

1 Introduction

A substantial literature on deep origins or historical persistence finds that many modern
outcomes such as income or social attitudes strongly reflect the characteristics of the same
places in the more or less distant past, often centuries or millennia previously. Notable
examples include showing how European mortality determines the quality of modern in-
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support from the Social Science and Humanities Research Council of Canada. The authors thank the editor,
Alan Taylor, and two referees for constructive comments that greatly improved the paper. Hans Martinez
Torres provided excellent research assistance. The R package for spatial inference is available at https://
github.com/morganwkelly/spatInfer.
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stitutions; how medieval pogroms prefigured Nazi zealotry; how the slave trade inhibits
modern African development; and how colonial boundaries still drive poverty in Peru.1

Naturally, such findings are open to various charges of p hacking, of publication bias,
of answers in search of questions, of ignoring mundane alternative explanations, of low
quality data, of monocausal and largely atheoretical explanations of complex phenomena,
of failures to explain what drives persistence, and so on. However, all of these objections
crumble into irrelevance in the face of one blunt fact: the unusual explanatory power of
these persistence variables. While a judicious choice of variables or time periods might
coax a t statistic past 1.96, there would appear to be no way that the t statistics of four,
five, or even larger that appear routinely in this literature could be the result of massaging
regressions, no matter how assiduously. Such persistence results must instead reflect the
workings of deep world historical processes: the enduring legacies of the past.

However, persistence regressions are spatial regressions—the values today of some
variable in a given set of places are regressed on another variable for the same places in
the past—and spatial data have two characteristics that make them prone to generate large
t statistics. The first is the ubiquity of spatial trends and other forms of large scale spatial
structure: Italian variables have strong north south trends, Europe enjoys better outcomes
than Sub-Saharan Africa, and so on. As with time series, regressing two trending spa-
tial series on one other will very often result in finding strong correlation, even when the
variables are unrelated. Simply adding basic spatial trend controls in a systematic way—a
quadratic in longitude and latitude for regional data, and indicators for World Bank re-
gions in global ones—causes many of the most celebrated results in historical persistence
to disappear immediately.

The second characteristic of spatial data is that they tend to show strong autocorrela-
tion.2 Neighbours resemble each other closely so that the number of useful observations is
lower than it appears, sometimes far lower. As a result coefficient estimates can be highly
imprecise which requires standard errors to be adjusted to get reliable inference. If no such
adjustment is made and heteroskedasticity consistent or small cluster standard errors are
used, large t-statistics are common even when the true effect size is negligible. In the next
Section we illustrate this with synthetic regressions of two independent series on each

1These are, in turn, Acemoglu, Johnson and Robinson (2001), Voigtländer and Voth (2012), Nunn (2008),
and Dell (2010). Review articles covering all aspects of historical persistence can be found in the volume
edited by Bisin and Federico (2021).

2This is Tobler’s First Law of Geography: “Everything is related to everything else, but near things are
more related than distant things.”
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other, with each having empirically realistic spatial correlations. Using heteroskedasticity
robust standard errors with no correction for spatial correlation, 38 percent of simulated
treatment t-statistics are above 2. Twenty one percent are above 3, and eight percent above
4. The extreme t-statistics that are the hallmark of the persistence literature may be less
a sign of incontrovertible historical truths than a warning of spurious results driven by
spatial correlation.

In this paper we use simple models of spatial correlation to introduce powerful new
simulation-based placebo and synthetic outcome diagnostic tests of no treatment effect.
Standard placebo tests randomly shuffle treatments across subjects and cannot therefore
be applied to spatial observations: assigning Sweden’s treatment to Argentina, and Mali’s
to Brazil erases the spatial structure that defines the data. Instead, we generate synthetic
noise placebo datasets that match the spatial structure of the treatment and are, by con-
struction, independent of outcomes. The collection of t-statistics from these placebo re-
gressions forms the reference distribution for a “randomization inference” style test of no
treatment effect. Our simulations provide an accurate reference distribution, predicated
on our assumption regarding the distribution functional form for the treatment variable.3

The placebo simulations provide, in addition, a simpleMonte Carlo check on howwell
the regression’s inference method deals with spatial correlation in the data. If the chosen
standard error correction is appropriate then about five per cent of placebo regressions
should be significant at five per cent. (For the original persistence regressions analyzed
here, the median placebo rejection frequency is twenty seven percent.) These placebo
Monte Carlos are especially useful, we will see below, for choosing the number of clusters
for spatial standard error corrections.

Our second diagnostic is a synthetic outcome test of the hypothesis that there is no
treatment effect and the outcome is generated by a trend plus spatially correlated noise.
We replace the actual outcomes with spatial noise that has approximately the same dis-
tribution and run repeated simulations. The resulting collection of t-statistics serves as
the reference distribution for a test of the hypothesis that the outcome is generated by a
trend plus noise that is spatially correlated but independent of the treatment: there is no
treatment effect.4 Failure to reject the null suggests that the original finding of a signifi-

3Our maintained hypothesis is that we have a correctly specified model for the treatment variable so
placebo test rejections could be driven by a mistake in this model. We use this placebo test as a diagnostic
because of this potential for rejections due to its having more restrictive (maintained) assumptions relative to
the original regression test of zero treatment slope.

4Note that this hypothesis test concerns a distribution rather than a parameter as is usually the case.
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cant treatment effect may have resulted from mechanical prediction of outcome trends by
treatment trends, or inadequate inference. A different measure of treatment or change in
conditioning information may be required to sharpen the estimate of the treatment effect
sufficiently to make it distinguishable from spatial noise.

To motivate our regression procedure we start by looking at what happens when we
add simple spatial trend controls to 30 persistence regressions, while leaving their original
standard error adjustment methods unchanged. For global studies the controls are dum-
mies for World Bank regions, with quadratics in longitude and latitude for smaller scale
ones. In 11 studies treatment slopes are no longer statistically different from zero at 5%,
even with standard errors that may be too small. Placebo simulations indicate that in 14 of
the remaining studies where slopes appear (at 5%) to be statistically significant, standard
errors are too small: nominal 5% t-tests reject the correct null hypothesis more than 5% of
the time, with 9 studies rejecting more than 10%. In other words, a failure to apply proper
standard error corrections and controls for spatial trends can lead to seriously distorted
regression results.

This leads us to introduce a new regression procedure that can reliably handle spatial
trends in the data and autocorrelation in the residuals. A common practice in dealing
with trends is to add polynomials of some arbitrary degree in longitude and latitude to
the regression as a form of geographically correlated fixed effect. We systematize this
procedure by including terms from aminimal tensor spline in coordinates that can flexibly
capture a wide range of long range spatial structure in the data. Intuitively these splines
are a mesh made up of products of, for example, four undulating threads that run north-
south, and another four that run east-west.5 In principle, we could add all the extra tensor
variables directly to our regression but this would rapidly exhaust degrees of freedom so
instead we use the first L principal components of these spline terms, where L is selected
by a Bayes Information Criterion (BIC) penalty. We refer to these principal component
regressors as spatial basis variables.6

These spatial basis variables serve to remove spatial trends and to reduce (but usu-
ally not to eliminate) spatial correlation in the residuals which improves the performance
of standard error corrections. We then apply two complementary methods of large clus-
ter spatial inference. Our first approach applied to all studies is that of Bester, Conley,

5A third time dimension could be added for panels; and locations could reflect the economic rather than
geographical distances between observations.

6A formal analysis of the properties of spatial basis regressions is given byConley, Kelly andKozbur (2024).
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and Hansen (2011) (BCH) which uses a standard cluster covariance estimator with a
small number of large clusters chosen using the k-medoids classification procedure rec-
ommended by Cao et al. (2023). Placebo simulations indicate that BCH, usually with four
clusters, works reliably.7

The second large cluster inference technique is that of Ibragimov and Müller (2010)
(IM). This involves estimating a study’s model within each of a set of clusters, again cho-
sen via k-medoids. Estimated cluster-specific treatment slopes, β̂c, for each cluster c are
then used as though they were observations in a classical Gaussian regression with just an
intercept of β (a location model), with β being the treatment parameter of interest. This
approach, while conservative, has very good robustness to cross-cluster heterogeneity but
is limited to studies with enough data for the whole regression model to be well estimated
within cluster. Placebo simulations again indicate that IM works well.

We apply the noise diagnostics and spatial basis regressions to 30 persistence studies
that have appeared in leading journals. Each of these papers is a careful and lengthy sta-
tistical exercise that we do not attempt to replicate in full. In each case we reproduce one
of the “leading” regressions that uses the full set of controls, usually located in one of the
right hand columns of Table 2 or 3. Given the preoccupation of the persistence literature
with treatment t-statistics, they will be our focus here.

This paper is concerned with detecting potential problems of inference caused by spa-
tial trends and correlation, and introducing inference methods to handle these reliably. It
is not concerned with issues of data construction. It is not concerned with the plausibility
of the mechanism that is said to drive the claimed persistence, or alternative explanations
of regression results, or with the quality of the underlying historical scholarship (although
this can be extremely high, especially in regional studies).

Above all, and this cannot be emphasized too strongly, we are not concerned with
somehow “validating” or “disproving” the findings of individual studies. In fact, the pa-
per is not interested in any individual result except insofar as it illustrates the broader
contours of the literature. Moreover, an individual regression’s results being non-robust
to spatial dependence issues does not necessarily imply that other regressions in the paper

7The common practice of clustering into many small clusters (like clustering household data by census
tract) generally leads to unreliable results with spatial data because within-cluster averages are correlated
between neighbouring small clusters. This applies especially to the clustering by observational units in longi-
tudinal studies advocated by Bertrand, Duflo and Mullainathan (2004).
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are equally problematic. In particular, changes in conditioning information can drastically
change the impact of spatial dependence upon inference.8

Using our spatial basis regressions with BCH standard errors, inference about persis-
tence effects changes drastically from the original studies (where most reported p-values
on the order of 0.001 or lower) with only 2 studies of the 30 having a treatment effect sig-
nificant at 5% and 2 more at 10%. Only 1 of our 30 studies can reject the synthetic outcome
test no treatment effect null at 5% (p = 0.047).

The IM results largely agree with those using BCH. We find, moreover, that cluster-
specific treatment estimates are often unstable. In two thirds of studies at least one cluster-
specific estimate has a sign that is opposite to that of the full sample estimate. One study
even exhibits Simpson’s Paradox: every cluster’s estimate has the opposite slope of the full
sample one.

Of course, the fact that a treatment is insignificant at conventional levels does not nec-
essarily mean that an effect is absent: it may simply not be possible to tie its magnitude
down with any precision given the heavily trending and autocorrelated observations that
are available. The legacies of history may be as overwhelming as their proponents insist,
or as trivial as most historians suspect: we just cannot tell with the data at hand.

Our paper makes several contributions to the applied econometrics literature using
spatial data. Besides enabling a test of no treatment effect, our placebo simulations facil-
itate the choice of the tuning parameter commonly required when implementing spatial
standard error adjustments.9 Although problems posed by trends in spatial and time se-
ries data have long been studied in statistics and econometrics going back to “Student”
(W. S. Gosset) in 1914, applied work with spatial data has often not paid much attention
to the issue as evidenced by many of the persistence studies that we examine. Our spa-
tial basis method (which is similar in spirit to “pre-whitening” approaches that have long
been popular in time series econometrics) offers a convenient way to de-trend in a general
manner and improves the reliability of spatial standard error adjustments in general by
reducing relevant spatial correlations.

The rest of the paper is as follows. The next Section gives an example of spurious
regression results with spatial observations while the placebo and synthetic outcome tests

8See for example Conley and Topa (2002) and Conley and Ligon (2002).
9Such tuning “parameters” can be choice of large clusters, terms in an approximation, or a reference cor-

relation function, e.g. Conley 1999, Ibragimov and Müller (2010), Kim and Sun (2011), Canay, Romano and
Shaikh (2017), and Müller andWatson (2022, 2023). Our use of simulation is closely related to bootstrapping
spatial data: see Conley et al. (2023).
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are introduced in Section 3. These diagnostics are applied to persistence regressions with
simple trend controls and no spatial standard error corrections in Section 4. The spatial
basis procedure is introduced in Section 5 and applied to persistence studies in Section 6.
Ibragimov and Müller (2010) inference and coefficient stability are considered in Section
7.

2 Spurious Results Due to Spatial Correlation

As we noted above, regressions based on spatial observations can be hard to estimate reli-
ably because the data often show marked directional trends or other large scale structure,
and are strongly autocorrelated. Here we illustrate the problems arising from spatial cor-
relation, and show that even in the absence of trends, t-statistics are frequently inflated
because standard errors without adequate adjustments for spatial correlation tend to be
too small. This is a spatial version of spurious inference caused by serial correlation that
has been a focus of the time series econometrics literature since Granger and Newbold
(1974), and dealing with it has been a central part of the spatial econometrics literature
since at least Conley (1999).

We are interested in least squares estimation of the familiar linear regression model:

yi = x′iβ + ui. (1)

The variance of the least squares estimator of β depends on the variance of the average
of xiui across observations.10 With spatial data many of the covariances between xiui and
xjuj may be positive, leading to a large increase in the variance of the estimator of β relative
to its variance under spatial independence.

This is illustrated in Figure 1. There are 250 towns represented by white dots scattered
at random over a square with sides of length one, and two independently constructed spa-
tial noise variables called “Historical Variable” and “Modern Outcome.” We use a Data
Generating Process (DGP) with highly spatially correlated data of the form that we will
see in real series below.11 The values of the noise variables in each town are regressed on

10The least squares estimator of β, β̂ can be written as: β̂ = β + [( 1
N

∑
xix

′
i)

−1 1
N

∑
xiu

′
i]. The variance of

β̂ is determined by the term in brackets.
11In the notation of the next Section, µ = 0, θ =

√
2/10, τ2 = 0.9, σ2 = .1. The variance of the sample mean

for this process is about 20.5 times what it would be without spatial dependence, approximately the same
amount of dependence an an AR1 time series with a slope of about 0.91.
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Figure 1: Regressions of one empirically realistic spatial noise series on another commonly
return the sort of t statistics reported in historical persistence studies. If we regress noise
values at thewhite dots (towns) on each other and useHC standard errors we get t = −3.8
with nominal significance p = 0.0001. The Monte Carlo significance level is 0.1: ten per
cent of simulations had t statistics with |t| > 3.8.

each other and using heteroskedasticity consistent standard errors (without any adjust-
ment for spatial correlation) we get a t statistic of−3.8with nominal significance of 0.01%.
However, the Monte Carlo significance level of the regression is actually 10%: one tenth
of simulations had t statistics with absolute value above 3.8. Thirty-eight per cent of sim-
ulations have t statistics above 2, 21% above 3, and 8% above 4. In fact, a t-statistic of 4.4
is required for Monte Carlo significance of 5%, and of 5.9 for 1%. The simulated data do
not include a spatial trend: were this done the inflation of t-statistics would be yet more
severe.

1.1 Spatial Standard Error Corrections

It is, of course, well known that for spatially correlated data heteroskedasticity consistent
standard errors can be incorrect (and perhaps too small), requiring some sort of correction.
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Figure 2: Spatial standard error adjustments. The diagram gives simulation rejection fre-
quencies of nominal 5% t-tests for a correct null hypothesis of zero slope from an OLS
regression of two independent but spatially correlated series on each other. The spatial
correlation of the series increases from left to right, described by the correlation between
points at distance .10.

Figure 2 illustrates how the performance of different standard error corrections can vary
as the level of spatial correlation between observations increases.

The simulations have 250 points distributed at random across a unit square and involve
regressing two sets of independent spatial noise on each other. The correlation between
points at distance 0.1 apart ranges from 0 to 0.5.12 A correlation of 0.5 might not appear
large by the standards of time series but it is important to remember that there are many
pairs of observations within that distance so seemingly modest pairwise correlations add
up to very large amounts: the variance of the sample mean for the spatially correlated
component is about 23 times greater than it would be if the data were uncorrelated. An
analogous AR1 time series with this level of dependence would have a slope of approx-

12The DGP from the equation (3) is used with µ = 0, θ =
√
2/10, with τ2 varying from zero to one, and

τ2 = 1− σ2.
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imately 0.92. Therefore, from left to right the Figure illustrates a wide range of spatial
correlation levels.

Figure 2 illustrates the performance of three commonly used spatial dependence cor-
rections along with two of the sort used in the remainder of this paper. The line labeled
“HC” illustrates that heteroskedasticity consistent inference with no correction for spatial
dependence performs very poorly as dependence increases. The line labeled “Conley 0.1”
uses a Conley (1999) correction with a rectangular kernel allowing for correlations up to
a distance of 0.1. It provides a considerable improvement over HC but still over-rejects
substantially, in particular for larger levels of correlation.13

The line labeled “36 Clusters” reports results using cluster standard errors with 36
medium-sized groups based on a square 6×6 grid, and it performs similarly to the “Conley
0.1” adjustment. As spatial correlation rises, the level of across-cluster correlations that are
unaccounted for increases, and this undermines its performance. Increasing the number
of clusters would aggravate this problem further.

The corrections labeled “BCH 4” and “BCH 6” illustrate the performance of the pri-
mary inference method used in the remainder of this paper. They use regressions aug-
mented with spatial basis functions and four or six large clusters chosen by k-medoids
classification. As the level of dependence increases, the lower number of clusters performs
better in terms of rejection frequencies at the cost of having fewer degrees of freedom for
t-tests and hence a tendency to have larger confidence intervals.

3 Spatial Diagnostic Tests

Given the strong risk of spurious results arising from trends and spatial correlations in
spatial data, we begin with two new diagnostic tests that can be applied once a researcher
has decided on a regression specification and inference method. The first diagnostic is a
placebo test where the real treatment is replaced with spatial noise. The second tests the
null hypothesis that the outcome is generated by a “trend plus spatial noise” process, with
no connection to the treatment. Both are joint tests of no treatment effect and the functional
form assumed for the distribution of either treatments or outcomes. We refer to them as
diagnostics relative to a benchmark test of zero treatment slope because they impose these
additional restrictions.

13This type of DGP is challenging for Conley (1999) estimators because important correlations extend for
large distances. See Conley, Kelly and Kozbur (2024) for details.
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3.1 Placebo Treatment Test

Our first diagnostic is a placebo test of no treatment effect. As we noted above, to shuffle
treatments randomly across subjects, as standard placebo tests do, is to ignore the spatial
correlation structure that defines the data. Instead we first de-trend the treatment variable
by regressing it upon controls for spatial trends, and then estimate a model of detrended
treatments’ spatial correlation structure. We take draws from this estimated distribution as
synthetic treatments. These synthetic treatment variables are independent of the outcome
by construction, but they have approximately the same spatial correlation structure as the
true (detrended) treatment. Repeatedly running the regression of interest using synthetic
treatments gives a collection of placebo treatment t-test statistics that forms the reference
distribution for a “randomization inference” type test of the hypothesis that there is no
treatment effect.

To use the placebo diagnostic we compare the study’s treatment slope p-value with
the p-value from the placebo reference distribution. Suppose that the study’s t-test has a
low p-value, rejecting a treatment effect slope of zero. If the placebo test has a similarly
low p-value rejecting “no treatment effect” this lends support to the paper’s t-test being
reliable. If however the placebo test clearly does not reject then there is a contradiction.
In such a case, because the placebo test’s reference distribution is well approximated by
the simulation, there is reason to suspect that the paper’s inference method is not properly
accounting for spatial correlations.

The placebo simulations offer another substantial benefit: they provide a simpleMonte
Carlo check on the performance of the regression’s inference method. If the inference
method accounts well for the spatial correlation in simulated data, rejection frequencies in
the simulations should match the nominal level of the test. For example, a 5% level t-test
should be significant in about 5% of placebo simulations. These simulations are not likely
to be a perfect match for the true data generating process, but they serve as an empirically
relevant Monte Carlo evaluation.14 We use our placebo Monte Carlo to evaluate tuning
parameter choice for spatial inference procedures, in particular how many clusters to use
with our BCH and IM large cluster adjustments.

14It is possible for these placebo simulations to have more spatial dependence in residuals than under the
true data generating process if the true coefficient is non-zero.
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3.2 Gaussian Spatial Processes

To estimate spatial structure for simulating our diagnostics we use an additive Gaussian
model. For a vector of observations of a variable V at sites swe assume it has two compo-
nents, one with spatial dependence and the other idiosyncratic noise:

V (s) = µ (s) + ψ (s) + η (s) . (2)

µ (s) is a mean which we will parameterize as a function of location coordinates. ψ (.) ∼
N

(
0, τ2K

) is a stationary Gaussian process that has spatial correlation matrix K with ij-
th elementK (si, sj) the correlation between sites si, sj ; and η (.) ∼ N

(
0, σ2I

) is Gaussian
idiosyncratic noise that is independent of ψ and location. So the distribution of V (s) is:

V (s) ∼ N
(
µ(s), τ2K (s) + σ2I

)
. (3)

A standard functional form for K in applied geostatistics is the Matérn function (see, for
example, Gneiting and Gutthorp 2010) which takes on different shapes ranging from ex-
ponential to Gaussian depending on the value of a smoothness parameter. For the data
here, theMatérn function with an exponential decay forK is a parsimonious choice across
studies. For locations si, sj at distance h apart their spatial covariance component equals

K (si, sj) = exp

(
−h
θ

)
(4)

where θ is a range parameter. All Matérn functions regardless of shape have the same
correlation, approximately 14%, at distance 2θ, so we report estimates of 2θ as a convenient
descriptor of spatial covariances. To describe the relative importance of the spatial signal
(τ2) and idiosyncratic noise (σ2) components of V we will use ρ defined as:

ρ =
τ2

τ2 + σ2
. (5)

3.3 Synthetic Outcomes Test

Our second diagnostic test uses simulated data to directly test the null hypothesis that out-
comes are generated by a combination of spatial trend plus spatially correlated noise that
match the marginal distribution of the real outcome variable. We estimate a parametric
“trend plus spatially correlated noise” model for the outcome and run regressions with
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the simulated outcomes replacing the true one. The trend in these simulated outcomes
may be mechanically related to trends in the treatment, but the remaining variation is by
construction independent of the treatment and other predictors. The resulting collection
of simulation t-statistics forms the reference distribution under the null hypothesis that
outcomes are generated by a “trend plus spatially correlated noise” process with no treat-
ment effect, that the real t-statistic can be compared against. The treatment effect slope
is not necessarily an optimal test statistic but the simulations provide a very accurate ap-
proximation of its reference distribution under the null hypothesis.

4 Motivation: Persistence Regressions with Trend Controls

To motivate our regression procedure, we begin by examining the robustness of each per-
sistence study’s results to adding simple spatial trend terms to its regression. We do not
yet correct standard errors for spatial autocorrelation but instead apply whatever method
was used in the original study and therefore anticipate that standard errors may be too
small. We then apply the placebo and synthetic outcomes tests to each study. In Section 5
we repeat the exercise but with spatial basis regressions and large cluster standard errors.

4.1 Robustness to Simple Spatial Trends

Large scale spatial structure is common in spatial data and needs to be controlled for to
obtain reliable confidence intervals or hypothesis tests. This is occasionally done in per-
sistence studies, and here we simply add the most widely used control variables system-
atically to every regression. For global studies based on country data, many studies use
distance from the equator and a dummy for continents as controls. Wemodify this slightly,
usingWorld Bank regions (Middle East and North Africa, Sub-Saharan Africa, and so on)
as a more useful classification than the continent dummies. For studies on a smaller geo-
graphical scale we add a quadratic in longitude and latitude.

If the addition of trend variables renders the estimated treatment effects not statistically
different from zero (even with standard errors that may be too small), this suggests that
there is insufficient evidence for the researcher to distinguish a persistence treatment effect
from a spatial trend. Such a treatment effect might indeed exist but it cannot be detected
with the available data.

13



Original Specification Simple Trend Added

Nominal
p

Placebo
p

Synth
p

Plac.
5%

Nominal
p

Placebo
p

Synth
p

Plac.
5%

Acemoglu, Colonial. 0.000 0.003 0.346 0.202 0.250 0.286 0.263 0.057
Acemoglu, Reversal. 0.002 0.018 0.112 0.119 0.191 0.254 0.272 0.078
Acharya, Slavery. 0.013 0.044 0.031 0.119 0.013 0.044 0.031 0.119
Alesina, Plough. 0.000 0.033 0.022 0.298 0.045 0.085 0.069 0.096
Alsan, Tsetse. 0.002 0.020 0.111 0.141 0.006 0.055 0.052 0.175
Ambrus, Cholera. 0.000 . 0.128 . 0.065 . 0.398 .
Arbatli, Conflict. 0.019 0.074 0.072 0.160 0.103 0.189 0.180 0.100
Ashraf, Diversity. 0.125 0.519 0.105 0.405 0.002 0.276 0.007 0.558
Bazzi, Individualism. 0.000 0.000 0.002 0.302 0.000 0.001 0.002 0.330
Becker, Weber. 0.000 0.003 0.000 0.233 0.000 0.001 0.000 0.184
Buggle, Serfdom. 0.002 0.012 0.011 0.152 0.010 0.051 0.066 0.122
Caicedo, Mission. 0.024 0.516 0.461 0.585 0.193 0.678 0.583 0.545
Comin, 1000BC. 0.002 0.118 0.480 0.370 0.829 0.874 0.867 0.138
Dell, Mita. 0.001 . 0.126 . 0.321 . 0.465 .
Drelichman, Inquisition. 0.000 0.000 0.000 0.074 0.000 0.000 0.000 0.103
Enke, Kinship. 0.000 0.021 0.107 0.345 0.000 0.013 0.104 0.274
Galor, Impatience. 0.001 0.011 0.094 0.170 0.016 0.036 0.055 0.084
Giuliano, Climate. 0.011 0.128 0.187 0.258 0.280 0.292 0.349 0.042
Iyer, Raj. 0.000 . 0.008 . 0.001 . 0.030 .
Juhasz Blockade. 0.006 0.030 0.773 0.228 0.261 0.263 0.281 0.034
LaPorta, Legal Origins. 0.001 . 0.003 . 0.009 . 0.000 .
Michalopoulos, Folklore. 0.004 0.030 0.006 0.158 0.000 0.001 0.000 0.089
Michalopoulos, Precolonial. 0.003 0.004 0.005 0.047 0.000 0.001 0.002 0.068
Montero, Saints. 0.009 . 0.012 . 0.014 . 0.018 .
Nunn, Mistrust. 0.000 0.000 0.004 0.140 0.000 0.003 0.031 0.114
Nunn, Slavery. 0.003 0.006 0.006 0.070 0.022 0.031 0.026 0.059
Schulz, Kinship. 0.000 0.066 0.246 0.377 0.039 0.062 0.086 0.075
Spolaore, Diffusion. 0.000 0.002 0.036 0.386 0.038 0.157 0.201 0.184
Squicciarini, Devotion. 0.001 0.124 0.020 0.411 0.835 0.855 0.826 0.108
Voigtlaender, Persecution. 0.012 . 0.026 . 0.012 . 0.017 .

Nominal, placebo and synthetic outcome significance levels for persistence studies, using their original
specification, and with simple trends added. Standard errors are not corrected for spatial autocorrelation
of residuals: the regressions use whatever standard error procedure was applied in the original studies.
Trends are a second level polynomial in longitude and latitude for regional studies, andWorld Bank region
and absolute latitude for global ones. Plac. 5% denotes the proportion of simulations where the placebo
treatment had a t-statistic above 2. Empty cells are for studies with binary treatments where placebos were
not constructed.

Table 1: Diagnostic tests for persistence studies. Standard errors are computed using the
same method as the original study.
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The impact of these trend controls is shown by comparing the blocks of results in Table
1 under “Original Specification” and “Simple TrendAdded”. Comparing the first columns
of these blocks shows that trends are clearly an issue for a substantial fraction of these
persistence regressions. Although the median significance level originally reported was
0.002, after adding our simple trend controls it rises an order ofmagnitude to 0.02. Ten of 30
studies have t-statistics that become not significantly different from zero at 5%, even with
standard errors that may be too small.15 The p-values for the 24 studies with non-binary
treatments (where placebo tests are constructed) are plotted in Figure 3. The grey dots
are the p-values originally reported, and the blue dots give p-values after a spatial trend
is included in the regression. For most studies in the top third of the Figure, it is clearly
possible that the persistence variables are acting as a proxy for omitted spatial trends. The
clear importance of spatial trends leads us in Section 5 to introduce a spline procedure that
allows a very flexible specification for spatial trends.

4.2 Placebo Tests

We conduct placebo tests for the 24 cross sectional studies that have continuous treat-
ment variables where the Gaussianmodel in Section 3 is a reasonable specification.16 Max-
imum likelihood estimates of spatial correlation parameters for the detrended persistence
treatment variables are given under the columns labelled x in Table 2 and these turn out
with few exceptions to be extreme. Given the very different geographical scales of the dif-
ferent studies, we report estimates of 2θ—the distance when correlationK is about 14%—
as a proportion of the 95-th percentile of distances between locations. These ranges tend to
be substantial in most cases indicating that spatial correlations are “slow” to decline with
distance.

The ratio ρ = τ2/(τ2+σ2) provides a useful summary of the size of spatial components
relative to idiosyncratic noise when, as is the case here, the estimate of 2θ is large relative
to observed distances. The large majority of studies report ρ values near one, showing that
spatial correlation is large compared with idiosyncratic noise.

15One study, Ashraf and Galor (2013), requires a joint significance Wald test of a quadratic in treatment
parameters and has a p-value of 0.12 originally and 0.02 after including a simple trend.

16Placebo tests are feasible with binary treatments but proper specification of a binary outcomemodel with
trends is not straightforward andwould possibly need to be tailored to the individual application. See Phillips,
Jin and Hu (2007) for a related discussion.
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Figure 3: Trend and placebo significance levels for persistence studies (excluding those
with binary treatments) using original standard error procedures. Grey dots are reported
p-values from persistence papers’ regressions, and blue dots give significance after a sim-
ple spatial trend is included in the regression. Red dots are placebo test p-values.
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Trend R2 Range 2θ Structure ρ
x y x y x y

Acemoglu, Colonial. 0.55 0.45 0.15 0.05 0.41 0.23
Acemoglu, Reversal. 0.53 0.42 0.20 0.05 0.99 0.81

Acharya, Slavery. 0.29 0.05 0.24 0.12 0.99 0.10
Alesina, Plough. 0.63 0.40 0.55 0.05 0.64 0.92

Alsan, Tsetse. 0.37 0.04 0.29 0.62 0.99 0.91
Ambrus, Cholera. . 0.13 . 0.15 . 0.95
Arbatli, Conflict. 0.69 0.12 0.66 0.05 1.00 0.72
Ashraf, Diversity. 0.95 0.37 1.99 0.35 1.00 0.99

Bazzi, Individualism. 0.10 0.35 0.25 0.30 0.99 0.82
Becker, Weber. 0.41 0.54 0.16 0.31 0.81 0.99

Buggle, Serfdom. 0.36 0.27 1.40 0.70 0.75 0.20
Caicedo, Mission. 0.96 0.03 1.98 0.15 1.00 0.88
Comin, 1000BC. 0.73 0.65 0.55 0.10 0.93 0.77

Dell, Mita. . 0.04 . 0.05 . 0.07
Drelichman, Inquisition. 0.07 0.05 0.05 0.00 0.26 0.87

Enke, Kinship. 0.48 0.33 0.05 0.05 0.70 0.67
Galor, Impatience. 0.42 0.56 0.15 0.20 0.96 0.53
Giuliano, Climate. 0.57 0.47 0.05 0.10 0.96 0.44

Iyer, Raj. . 0.39 . 0.25 . 0.80
Juhasz Blockade. 0.93 0.43 2.12 0.00 0.99 0.00

LaPorta, Legal Origins. . 0.10 . 0.20 . 0.14
Michalopoulos, Folklore. 0.30 0.44 0.05 0.15 0.90 0.60

Michalopoulos, Precolonial. 0.08 0.14 0.04 0.24 0.75 0.70
Montero, Saints. . 0.21 . 0.00 . 0.88
Nunn, Mistrust. 0.34 0.03 0.10 0.10 0.30 0.10
Nunn, Slavery. 0.31 0.30 0.06 0.19 0.96 0.30

Schulz, Kinship. 0.65 0.58 0.04 1.74 0.55 0.77
Spolaore, Diffusion. 0.63 0.47 0.25 0.21 0.88 0.86

Squicciarini, Devotion. 0.20 0.47 0.26 0.00 0.94 0.95
Voigtlaender, Persecution. . 0.16 . 0.26 . 0.46

Maximum likelihood estimates of spatial parameters of the treatment (x) and outcome (y) variables.
TrendR2 is the fraction of the variance explained by trend variables. For global studies the trend variables
are absolute latitude andWorld Bank region, and for smaller scale studies they are a quadratic in longitude
and latitude. The remaining statistics are for the residuals from this regression. Range is the effective
range 2θ, expressed as a fraction of the 95th percentile of the distance between sites. Structure is the ratio
of signal to signal plus noise ρ.

Table 2: Spatial parameters of treatment and outcome variables.
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Returning to Table 1, the first column of each block labeled “Nominal p” reports sig-
nificance levels of a t-test of zero treatment slope. In the “Original Specification” block, all
studies have treatment slope p-values well below 5%with the exception of the Ashraf and
Galor (2013)Wald statistic p-value of 0.125. The second column of the “Original Specifica-
tion” block reports placebo test p-values, and these contradict an original test rejection of
zero treatment slope at conventional levels in 7 of 24 cases. The fourth columnof each block
reports the fraction of placebo simulation test statistics that are deemed statistically signif-
icant at 5% using the study’s t-test procedure. If the study’s inference method is working
well, this column should be about 5%. Only 3 studies have rejection frequencies below
10%. The remaining 21 studies markedly over-reject the true null hypothesis, indicating
that their standard errors are too small.

In the trend-augmented regressions, reported in the “Simple TrendAdded“ block, only
20 of 30 studies have estimated treatment effects that are significantly different from zero
at 5%. However the placebo test indicates a failure to reject no treatment effect (at 5%) in 6
of the 20, suggesting that these papers’ standard errors are not adequately accounting for
spatial dependence, even when augmented with simple trends. These discrepancies are
illustrated in Figure 3 using blue and red dots respectively. Low values of both blue and
red dots indicate a satisfactory methodology; but low blue values and high red ones are
contradictory and suggest the paper’s inference methods are inadequate. The fourth col-
umn of the “Simple Trend Added“ block of Table 1 presents the rejections for the placebo
test Monte Carlo exercise with 10 of 24 studies having rejection frequencies between 4%
and 9% but the remaining 15 rejecting 10% or more: better than for the “Original Specifi-
cation” block, but there is clearly room for improvement. This leads us in the next Section
to introduce a new regression procedure to improve inference in the presence of spatial
dependence.

4.3 Synthetic Outcome Tests

Table 1 also reports results fromour synthetic outcome tests in the columns labeled “Synth-
p”. To construct synthetic outcomes, weuse the same trendvariables as in Table 1: absolute
latitude and regional indicators for global studies, and a quadratic polynomial in latitude
and longitude for smaller scale ones. We generate noise as we did for treatments in the
placebo test, using maximum likelihood estimates for detrended outcomes. These param-
eter estimates are reported in the columns labelled y in Table 2. The outcomes (which
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usually are fairly mundane economic variables such as consumption or GDP per capita)
tend to have considerably lower spatial dependence than treatments but are nevertheless
substantially spatially correlated in most cases.

We apply the synthetic outcome diagnostic to the 30 original regressions in the “Orig-
inal Specification panel of Table 1. Strikingly, for 14 of 30 original specifications we are
unable to reject (at 5%) the hypothesis that outcomes are driven by trend plus noise; that
there is no true treatment effect. This suggests significance results in nearly half of the
original regressions could be due to treatment trends predicting outcome trends or to in-
adequate handling of spatial correlation. The corresponding results in the “Simple Trend
Added” panel for trend-augmented regressions are similar, with only 13 of 30 studies re-
jecting the trend plus noise no treatment effect hypothesis at 5%, and 18 rejecting at 10%.
The specifications in our trend augmented regressions are sufficient to capture the trend
component of our synthetic outcomes so results for this panel suggest many studies’ orig-
inal inference methods do not properly account for spatial dependence.

5 Regression with a Spatial Basis and Large Cluster Inference

5.1 Spatial Basis Regressions

Our approach is to augment regressions with a flexible function of locations based on
spatial splines to make inference with spatial observations more reliable. We add a set of
spatial regressors gi to our regressions

yi = x′iβ + g′iδ + ϵi. (6)

These additional regressors gi serve two purposes. First, they provide a flexible way to de-
trend the data. Second, they reduce (but do not always eliminate) spatial correlation in
residuals, making them closer towhite noise so that it is easier to estimate reliable standard
errors.17

The terms in gi are motivated by considering a tensor spline approximation to the de-
pendent variable surface in coordinate space. Intuitively we can think of this spline as a
mesh made up of a small number r of undulating threads that run north-south, and an-

17The detrending role of our spatial basis is more important than its reduction of residual correlations be-
cause we will still use spatial dependence robust inference methods. The properties of this estimator are
analyzed by Conley, Kelly and Kozbur (2024).
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other r that run east-west. Each thread can capture a substantial amount of the variation
along its path.

Consider the following parameterization of a surface as a function of two spatial co-
ordinates m and n, such as latitude and longitude. In each dimension we can flexibly
approximate a function of its coordinate as a linear combinations of r basis functions. This
yields functions h1(m) and h2(n):

h1 (m) =

r∑
k=1

αkak (m) , h2 (n) =

r∑
j=1

βjbj (n) (7)

where the αk and βj are parameters and ak (m) and bj (n) are known basis functions. For
basis functions we use piecewise linear B-splines, each of which is a triangle over an in-
terval and then zero otherwise. To generalize this to flexible functions of (m,n) in two
dimensions we allow for interactions between all of the components of our single coordi-
nate basis functions, yielding

f (m,n) =

r∑
k=1

r∑
j=1

γkjak (m) bj (n) . (8)

We therefore have r2 basis functions ak (m) bj (n), each pair of whichmakes a three dimen-
sional surface, and the γk,j are an array of parameters.18 We evaluate the set of interacted
basis functions {ak (m) bj (n)} at the coordinates of all observations and collect them in an
N by r2 matrixM .

We beginwith lowdimension tensor products of piecewise linear (triangular) B-splines.
An example of one is given in Figure 4 where the simple surface explains 80 per cent of the
variance of the outcome variable. To further conserve degrees of freedom, we do not use
the matrix of basis functionsM directly but take instead its first L principal components
as our spatial regressors gi and choose the value of L by a Bayesian Information Criterion
penalty.

5.2 Spatial Correlation Inference Corrections: BCH and IM

We rely on including the gi terms in the regression to de-trend our data and also anticipate
they will capture some of the “lower frequency” spatial noise fluctuation in the data to

18A discussion of multidimensional splines can be found in Hastie, Tibshirani and Friedman (2008, Section
5.7) and includes a diagram (Figure 5.10) illustrating the components of a tensor B-spline.
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Figure 4: An example of a 6× 6 tensor product of piecewise linear B-Splines in longitude
and latitude, applied to literacy in nineteenth century German from Becker and Woess-
mann (2009). As Figure 6 shows, this minimal spatial surface captures 80 per cent of the
variation in literacy.

make inference easier. In general, however, not all autocorrelation in residuals will be
removed so we still need to use spatial dependence robust inference procedures.

We first compute spatial dependence robust standard errors using BCH. This proce-
dure employs standard cluster robust covariance estimators but with a small set of very
large, well-shaped clusters, and the resulting t-statistic has critical values based on a Stu-
dent t distribution with degrees of freedom equal to the number of clusters minus one.
In most of the studies we examine the selected number of clusters is four in which case a
t-statistic of 1.96 has a p-value of 0.14 and the critical value for a 5% test is 3.2. The key
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requirements for the approximations in BCH to work well are that (a) cluster averages are
approximately independent due to their large interior relative to boundary, (b) cluster av-
erages are approximately Gaussian due to large group size, and (c) regressors’ variances
are similar across clusters.

In Section 7 we check the sensitivity of our results to the BCH homogeneity assump-
tions by comparison to the alternate large cluster method of Ibragimov and Müller (2010)
that has excellent robustness properties under general cross-cluster heterogeneity. IM in-
ference can be used with the same k-medoids clusters as BCH as long as there are enough
within-cluster observations to get reasonable cluster-specific regression estimates. We also
use our placebo-based Monte Carlo to evaluate IM inference.

Large cluster methods like BCH or IM are known to work better than Conley (1999)
standard errors when spatial dependence levels are very high, which is the case for most
data here. With higher spatial dependence, the number of clusters used should decrease
so that most interior observations become farther from and less correlated with interior
observations of other groups, resulting in group averages remaining approximately inde-
pendent. We allocate points to clusters using the k-medoids clustering algorithm analyzed
by Cao et al. (2023) who demonstrate that a k-medoids partitioning algorithm produces
well-shaped’ clusters that have the requisite small boundary relative to interior, outside of
pathological cases.19

The placebo simulations serve as a diagnostic to evaluate the performance of both BCH
and IM with a chosen set of clusters. If around 5% of placebo simulations are significant
for a nominal 5% test, this suggests that the number of clusters is appropriate. We start
with a modest number of clusters, six, then if more than 8% are rejected we successively
reduce the number of clusters. In most cases the chosen number is four. As noted above,
the residuals in placebo simulations can exhibit higher spatial correlation than those in the
real data so this diagnostic may lead us to be conservative in a sense, to err on the side of
keeping the number of clusters relatively small.20 This will still result in reliable inference,
but confidence intervals may be wider than necessary.

19A k-medoids clustering algorithm is analogous to a k-means classification algorithm, but the cluster “cen-
ters’ are locations of within sample data points. This allows cluster calculation using just inter-point (poten-
tially non-Euclidean) distances between observations. See the Appendix for further discussion about imple-
menting cluster choice.

20IM inference is also conservative in the usual sense, nominal 95% confidence intervals have 95% or greater
coverage. See Section 7.
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Becker, Weber. Obs=452, Splines=6, Basis=18, BCH Clusters=5.

Figure 5: Example of the effect of adding spatial basis terms from a 6×6 spline to a regres-
sion. The optimal basis dimension based on BIC is 18 and explains 80% of variance in the
outcome. With the basis, the treatment coefficient falls by about 16%. However, spatial
correlation of residuals remains with a high five-nearest-neighbors Moran statistic of 12
(scaled to be standard normal under the null of zero spatial correlation). The t-statistic
computed with heteroskedasticity robust standard errors remains over 4.5 and that com-
puted with Conley standard errors (using a uniform kernel with cutoff of 100km) falls to
2.3. Given that the BCH t-statistic has a reference Student t distribution with four degrees
of freedommaking interpretation difficult, the BCHpanel reports a pseudo t-statistic given
by the value of a standard normal statistic that has the same p-value.

5.3 Two Example Regressions

An example of the process at work for one persistence study is given in Figure 6.21 The
first two panels give the BIC and adjusted R2 of a regression of the dependent variable on

21The same diagram for all studies can be found in the Online Appendix.
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the first L principal components of a 6×6 tensor, as basis dimension L rises. It can be seen
that 18 principal components minimize BIC and explain about 80% of the variance in the
dependent variable. Next is the regression coefficient with the outcome is rescaled so that
the original zero basis coefficient is one: including 18 basis vectors causes this to fall by
17%.

The box labeled Moran reports Moran tests for spatial correlation. The Moran test
that we use can be interpreted as the average correlation among five nearest neighbors.22
The reported Moran statistics are scaled so they have approximately a standard normal
distribution under the null hypothesis of zero spatial correlation. The Moran statistics
generally decline with the number of basis terms, as is the case in all studies analyzed
here, but remain larger than 8, clearly rejecting a null hypothesis of no spatial correlation
even after including the spatial basis terms.

The panel labeledHC reports heteroskedasticity consistent t statistics that remain above
4.5 as the basis terms increase. However, as reported below in Table 3, 16% of placebo sim-
ulations are significant at 5% suggesting that HC standard errors are too small. For BCH
with five clusters chosen by k-medoids, nominal 5% tests have 4% rejections in placebo
simulations indicating it works satisfactorily. The panel labeled t Conley reports t-statistics
created using Conley standard errors with a uniform kernel that is one for pairs of obser-
vations within 100km and zero otherwise, with results in between BCH and HC.

BCH critical values are based on a Student-t with four degrees of freedom rather than
the standard normal critical values used for HC andConley. Therefore, tomake the results
easily interpretable the panel reports a pseudo-t statistic which is the value of a standard
normal statistic with the same p-value: for instance if the BCH p-value was 0.05 then the
BCHpseudo-twould be 1.96. It can be seen that these pseudo t-statistics are near one: there
is no evidence of a statistically significant treatment effect slope using basis regressions
with BCH inference.

Figure 6 presents an illustration of our approach for a small sample size study with 64
observations, Acemoglu, Johnson and Robinson (2001) where BIC is minimized by a 3×3

tensor with 3 principal components that account for 35% of the variation in the outcome.
In this case, as in other global studies, we no longer use regional indicators when we add

22Specifically, if we define ei as the residual at site i, a Moran statistic I can be constructed using weights
wij for sites i and j (with wii = 0) as I = 1∑

ij wij

∑
i,j wijeiej/(

1
N

∑
i e

2
i ). Different weights will emphasize

different covariances. We use nearest neighbor weights where wi,j is an indicator equal to one if j is among
i′s five nearest neighbors and zero otherwise.
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Acemoglu, Colonial. Obs=64, Splines=3, Basis=3, BCH Clusters=4.

Figure 6: Acemoglu et al, “Colonial Origins”. Adding 3 principal components from amin-
imal 3×3 spatial basis causes the HC t-statistic (which the 5% placebo level in Table 3 and
low Moran statistic suggest is reliable here) to fall from 4 to 1.5.

a spatial basis. This study shows how adding even a small number of spatial basis terms
can substantially alter empirical results, both point estimates and inference. The third sub-
graph indicates that with 3 basis terms the estimated coefficient of interest falls by over half
and the fourth panel indicates that the Moran statistic falls below 1.5: residuals lose their
spatial correlation. Our placebo simulations indicate that using BCH with four clusters
chosen by k-medoids nominal 5% tests reject at 6%, indicating it works satisfactorily. A
BCH t-test fails to reject a zero treatment slope with any basis and at 3 or more basis terms
all three inference methods agree and fail to reject a zero slope.
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6 Historical Persistence: Spatial Basis Regressions

We will now examine the impact of applying our spatial basis regression method and di-
agnostics to 30 studies of historical persistence that have appeared in leading journals.
Most have continuous treatments but we do include five studies that use binary ones. The
procedure extends immediately to panel regressions by using a three dimensional, spa-
tiotemporal basis but we do not consider this here. Details of each regression are given
in Appendix B. The simple trend adjustments used in Section 4—regional dummies and
absolute latitutude for global studies and a quadratic in longitude and latitude for global
ones—are now omitted because of the spatial basis.

Table 3 presents results from applying the spatial basis procedure and diagnostics to
these persistence regressions. This choice of spatial basis terms and number of BCH clus-
ters used in the Table are determined by a straightforward two step procedure.

Firstly, to minimize the risk of overfitting, we choose among spatial bases constructed
from the principal components of relatively small tensors based on piece-wise linear B-
splines with dimensions ranging from 3× 3 to 6× 6 for larger studies and 3× 3 to 5× 5 for
studies with fewer than 100 observations. We select the the combination of tensor dimen-
sion and principal components that minimize BIC in a regression predicting the outcome
with our spatial basis.23 Secondly, we use the placebo simulations to evaluate rejection
frequencies for a 5% nominal test for 3 to 6 k-medoids clusters and select the highest num-
ber of clusters where rejection frequencies are 8% or lower. In 19 of 24 studies, we found a
cluster choice with 8% or fewer rejections with the number of PCs that minimized BIC. In 6
studies where rejection frequencies for all options were above 8%we systematically varied
the number of PCs (up or down 1 or 2) and then repeated the Monte Carlo evaluation to
choose clusters based on rejection frequency. 24 This slight adjustment of PCs resulted in
specifications with 8% or lower rejections in 5 of 6 cases with the exception of one study
(with 40 observations) where best-caseMonte Carlo rejections remained at 9%. For binary
treatments where placebo simulations are not conducted, results for four clusters are re-

23We select the model via BIC in this regression without other conditioning information to make sure we
have a good basis for de-trending the outcome. It may contain a few basis terms more versus what would be
selected with conditioning information. Having a few extra basis terms will tend to help when implementing
spatial dependence robust inference as discussed in Conley, Kelly and Kozbur (2024).

24We first added one PC to the minimal BIC number, redid the Monte Carlo, stopping if we found a cluster
size with 8% or fewer rejections. If necessary we repeated this procedure by subtracting one PC relative to
BIC-optimal, adding two PCs, and finally subtracting two PCs.
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HC p BCH p Moran

Estim-
ated

Plac-
ebo

Plac
5%

Synth
Out

Estim-
ated

Plac-
ebo

Plac
5%

Synth
Out

Acemoglu, Colonial. 0.21 0.24 0.06 0.24 0.34 0.38 0.06 0.41 1.03
Acemoglu, Reversal. 0.80 0.82 0.06 0.86 0.80 0.86 0.09 0.82 0.20
Acharya, Slavery. 0.05 0.12 0.12 0.53 0.20 0.21 0.06 0.66 2.15
Alesina, Plough. 0.28 0.35 0.08 0.33 0.18 0.18 0.05 0.20 1.90
Alsan, Tsetse. 0.01 0.07 0.18 0.16 0.21 0.28 0.08 0.33 6.13
Ambrus, Cholera. 0.58 . . 0.83 0.52 . . 0.68 6.32
Arbatli, Conflict. 0.03 0.08 0.11 0.07 0.24 0.33 0.07 0.36 1.39
Ashraf, Diversity. 0.00 0.01 0.16 0.01 0.15 0.17 0.06 0.16 12.82
Bazzi, Individualism. 0.00 0.00 0.34 0.00 0.16 0.17 0.05 0.21 25.22
Becker, Weber. 0.00 0.00 0.10 0.00 0.12 0.11 0.04 0.16 11.65
Buggle, Serfdom. 0.00 0.02 0.37 0.08 0.21 0.27 0.06 0.30 .
Caicedo, Mission. 0.35 0.71 0.41 0.64 0.51 0.63 0.08 0.60 19.99
Comin, 1000BC.* 0.01 0.05 0.13 0.12 0.23 0.27 0.07 0.38 3.27
Dell, Mita. 0.00 . . 0.06 0.19 . . 0.33 5.85
Drelichman, Inquisition. 0.00 0.00 0.09 0.00 0.03 0.04 0.06 0.05 14.84
Enke, Kinship. 0.26 0.47 0.17 0.70 0.38 0.45 0.06 0.61 15.60
Galor, Impatience.* 0.00 0.03 0.14 0.02 0.15 0.19 0.07 0.12 1.45
Giuliano, Climate.* 0.01 0.04 0.15 0.07 0.07 0.11 0.07 0.07 3.83
Iyer, Raj. 0.01 . . 0.05 0.33 . . 0.41 8.75
Juhasz Blockade. 0.81 0.82 0.04 0.89 0.65 0.70 0.07 0.83 -1.08
LaPorta, Legal Origins. 0.00 . . 0.00 0.11 . . 0.23 2.34
Michalopoulos, Folklore.* 0.00 0.01 0.10 0.02 0.03 0.03 0.05 0.10 3.01
Michalopoulos, Precolonial. 0.00 0.01 0.14 0.01 0.16 0.17 0.05 0.17 7.22
Montero, Saints. 0.01 0.01 0.06 0.02 0.12 0.15 0.06 0.15 18.93
Nunn, Mistrust. 0.74 0.80 0.11 0.93 0.58 0.61 0.06 0.80 .
Nunn, Slavery. 0.09 0.10 0.06 0.10 0.24 0.27 0.08 0.27 -0.28
Schulz, Kinship. 0.19 0.25 0.08 0.35 0.28 0.34 0.07 0.39 0.40
Spolaore, Diffusion. 0.06 0.19 0.15 0.20 0.26 0.32 0.06 0.33 6.76
Squicciarini, Devotion.* 0.47 0.55 0.12 0.52 0.25 0.32 0.07 0.30 2.46
Voigtlaender, Persecution. 0.00 . . 0.00 0.07 . . 0.07 7.36

Significance levels for BCH andHeteroskedasticity Consistent standard errors. Estimated gives the signifi-
cance level from the spatial basis regression, followed by the placebo and synthetic outcome ones. Placebo
5% gives the fraction of placebo simulations that are significant at 5%. Empty placebo cells correspond
to studies with binary treatments. Moran gives the z test value for residual autocorrelation and is not re-
ported for studies with multiple observations at the same site. Stars denote studies where the number of
principal components was changed from the minimum BIC number in order to obtain 5% placebo values
below 0.08. The change made is described in the details of each study given in Appendix B.

Table 3: Regression, placebo, and synthetic outcome significance levels for spatial basis
regressions, using BCH and heteroskedasticity consistent standard errors.
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ported in the Table, and Appendix Table 1 reports results for three to five clusters that are
very similar across cluster choices.

The same spatial parameters reported for the simple trend regressions in Table 2 are re-
peated in Table 4, with three columns added. These are the tensor dimension and number
of principal components that minimized BIC, and the number of BCH clusters chosen by
the 5% placeboMonte Carlos. The 5 studies where adjustments to the BIC optimal number
of splines were used are indicated with stars: details of each are given in Appendix B.

Placebos are constructed by regressing the treatment on the principal component basis
and using the estimated spatial parameters of the residuals to generate spatial noise. Syn-
thetic outcomes are derived, as previously, by generating noise that matches the residuals
of a regression of the outcome on a quadratic in longitude and latitude.

Additional controls were added in three cases. Malaria prevalence is included as a
control in all studies of Africa and is added to Nunn (2008). A dummy is included in
Michalopoulos and Papaioannou (2013) for areas within 200 kilometers of the coast, and
for Nunn andWantchekon (2011) indicators were added for the three main cities of west-
ernNigeria. Obvious outlierswere omitted in two studies: Iceland andDjibouti forAlesina,
Giuliano and Nunn (2013), and Hong Kong for Acemoglu, Johnson and Robinson (2002).

Table 3 presents significance levels for tests of zero treatment slope for two inference
methods: heteroskedasticity consistent standard errors (with no spatial correlation ad-
justment), labelled HC; and BCH large clusters. The columns labeled “Estimated” reports
p-values from a t-test of zero treatment slope for the spatial basis regressions. The column
labeled “Placebo” reports the p-value for the placebo test of no treatment effect, with bi-
nary treatments left blank. The columns labeled “Synth-Out’ reports the p-value of a test
that the outcome is generated by a spatial trend plus noise. The final column of each block
labeled “Plac-5%’ reports the fraction of placebo simulations that are significant at 5%, us-
ing that block’s inference method. This diagnostic indicates a problem with the inference
method if these rejection frequencies are substantially different from 5%. In particular, if
the rejection frequency is well above 5% it raises the concern that the standard errors are
too small and confidence intervals are too narrow. The last columns gives the z-score of a
Moran test for zero spatial correlation in residuals (using five nearest neighbours). Table
4 lists the BIC choice of tensor dimension and number of principal components along with
the number of clusters used.

In the 24 studies with available placebo Monte Carlo simulations, 21 studies had a
nominal 5% test placebo rejection frequencies of 4% to 7%. Three studies had 8% rejec-
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Trend R2 Range 2θ Structure ρ
N Spl. PCs Clust x y x y x y

Acemoglu, Colonial. 64 3 3 4 0.46 0.36 0.15 0.05 0.53 0.39
Acemoglu, Reversal. 40 4 5 4 0.44 0.37 0.25 0.05 0.99 0.96

Acharya, Slavery. 1152 3 2 4 0.54 0.05 0.20 0.10 0.99 0.10
Alesina, Plough. 139 4 7 3 0.74 0.07 0.10 0.10 0.61 0.92

Alsan, Tsetse. 379 6 15 4 0.65 0.04 0.05 0.60 0.42 0.91
Ambrus, Cholera. 357 6 7 4 . 0.13 . 0.15 . 0.95
Arbatli, Conflict. 147 3 3 4 0.80 0.11 0.15 0.05 0.91 0.77
Ashraf, Diversity. 143 4 6 5 0.52 0.62 1.45 0.10 1.00 0.36

Bazzi, Individualism. 2040 5 16 4 0.29 0.35 0.25 0.30 0.96 0.82
Becker, Weber. 452 6 18 5 0.66 0.54 0.05 0.45 0.77 0.91

Buggle, Serfdom. 17155 5 24 5 0.72 0.27 0.10 0.70 0.25 0.20
Caicedo, Mission. 548 6 5 4 0.76 0.03 2.00 0.15 1.00 0.88
Comin, 1000BC. 105 3 5 5 0.61 0.53 0.40 0.20 0.99 0.84

Dell, Mita. 1477 3 4 4 . 0.04 . 0.05 . 0.08
Drelichman, Inquisition. 546 6 6 4 0.08 0.05 0.05 0.10 0.24 0.87

Enke, Kinship. 1216 5 10 5 0.56 0.20 0.05 0.10 0.68 0.72
Galor, Impatience. 87 5 3 4 0.05 0.48 0.30 0.15 0.99 0.66
Giuliano, Climate. 72 3 2 4 0.48 0.34 0.10 0.15 0.78 0.54

Iyer, Raj. 271 4 8 4 . 0.39 . 0.30 . 0.80
Juhasz Blockade. 63 3 3 4 0.90 0.43 2.00 0.05 0.99 0.00

LaPorta, Legal Origins. 130 3 1 4 . 0.11 . 0.05 . 0.37
Michalopoulos, Folklore. 101 4 4 4 0.20 0.41 0.10 0.10 0.79 0.66

Michalopoulos, Precolonial. 683 5 14 5 0.15 0.14 0.05 0.35 1.00 0.60
Montero, Saints. 1625 3 5 4 . 0.21 . 0.20 . 0.55
Nunn, Mistrust. 17644 4 8 4 0.02 0.03 2.00 0.15 0.34 0.11
Nunn, Slavery. 52 4 6 4 0.33 0.30 0.20 0.20 0.99 0.30

Schulz, Kinship. 85 3 6 4 0.29 0.55 0.05 0.90 0.96 0.70
Spolaore, Diffusion. 141 4 6 4 0.59 0.40 0.05 0.20 0.96 0.90

Squicciarini, Devotion. 82 4 6 4 0.72 0.47 0.30 0.10 0.93 0.95
Voigtlaender, Persecution. 320 6 2 4 . 0.16 . 0.15 . 0.50

Spl. gives the number of B-splines in each direction used to construct the tensor and PCs the number
of principal components used. Clust is the number of BCH clusters selected by 5% placebos. For the
treatment (x) and outcome (y) variables trend R2 is the fraction of the variance explained by the spatial
basis in the case of treatments, and a quadratic in longitude and latitude for outcomes. The remaining
statistics are for the residuals from this regression. Range is the effective range 2θ, expressed as a fraction
of the 95th percentile of the distance between sites. Structure is the ratio of signal to signal plus noise ρ.

Table 4: Parameters of spatial basis placebos and synthetic outcomes.
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Significance levels of placebo and synthetic outcome tests
for spatial basis regressions.

Starred entries use unadjusted SEs.

Figure 7: Regression, placebo, and synthetic outcome significance levels for persistence
studies. HC inference is used for starred studies and BCH inference is used for the re-
maining, non-starred studies.
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tions and one had 9% rejections. Overall, these placebo simulation rejection rates promote
confidence in the BCH inference procedure.

For HC standard errors, 7 studies had placebo test rejection frequencies at 8% or be-
low but of these one had Moran tests with z-scores markedly above two indicating spatial
dependence in residuals. In the 6 remaining cases, HC inference appears adequate. This
is a result of these studies’ conditioning information and/or the presence of spatial basis
regressors. When adequate, HC inference is arguably preferable to BCH inference as it
may have shorter confidence intervals.

Figure 7 presents our results for treatment slope t-tests and our two diagnostic tests
across 30 studies. P-values are from BCH inference in 24 studies, with HC standard errors
for the other 6 (indicated by stars). We anticipate that some researchers will want to use
our spatial basis regression and HC standard errors as a starting point, then check the
placebo and Moran test diagnostics and if the diagnostics appear acceptable, to stick with
HC standard errors. We note, however, that BCH returns qualitatively similar significance
levels in 5 of 6 cases where we report HC results.25 So this Figure would be similar if we
used BCH throughout. Significance levels for spatial basis regressions are given by the
grey dots. P-values for our placebo and synthetic outcome tests are give by blue and red
dots, respectively. The diagram is truncated at 0.5 for ease of interpretation.

The results illustrated in Figure 7 are strikingly different from those reported in the
original persistence studies. Only two studies have treatment effect slope estimates that
are statistically different from zero at 5% and only three more have p-values between 7%
and 9%. Our placebo diagnostic tests of no treatment effect return significance levels that
qualitatively agreewith those for t-tests. The synthetic outcome tests, which are applicable
across all studies, echo these results with only one study rejecting the null at 5%. Even at
a 10% significance level, only five studies reject the hypothesis that outcomes are spatial
trend plus noise with no true treatment effect.

7 Ibragimov-Müller Inference and Coefficient Stability

This Section presents estimates using IM, an alternative large cluster estimator that is
conservative but also robust to across-group heterogeneity. IM involves estimating spa-

25The one exception has a 9% p-value with HC inference versus a 26% p-value with BCH.
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tial basis regressions to get β̂c for each cluster in a set of C clusters. 26 The β̂c are then
used as though they were observations in a classical Gaussian linear model with just an
intercept of β (a location model). A point estimate of β is the cross-cluster average of
these β̂c, β̄ = 1

C

∑
c β̂c. The usual formula for the sample variance of a mean is utilized,

S = [ 1
C−1

∑
c(β̂c − β̄)2]/C, to form a t-statistic: tIM = β̄−β0

S1/2 . Ibragimov and Müller (2010)
show that inference based on a Student-t distributionwithC−1degrees of freedom is valid
and conservative even with quite general heterogeneity across clusters for confidence per-
centages and cluster intervals we use here. So, an IM 95% confidence interval will have
95% or greater coverage probability even with heterogeneity in the variance of β̂c across
clusters. This not only provides a complementary, heterogeneity-robust approach to infer-
ence but also provides a nice illustration of treatment effect stability (or lack thereof) by
simply examining the group-specific estimates: β̂c.

Estimating cluster-specific versions of a given study’s specification requires a large
enough cluster size relative to the complexity of its regression model. Therefore, we only
apply IM to the 15 studies with over 250 observations where the full study specification
augmented with our spatial basis still has reasonable degrees of freedom within cluster.
Table 7 reports results with cluster number again chosen by 5% placebo Monte Carlo re-
jection results as for BCH. For studies with a binary treatment, four clusters are again used
in the Table with full results for 3, 4 and 5 clusters given in Appendix Table 1. We report
95% confidence intervals for each study that generally agree with those for BCH. Only one
study has a statistically significant treatment effect significant at 5% with two more sig-
nificant at 10%. Placebo tests find two studies reject the no treatment effect hypothesis at
5% and another at 10%. Placebo test p-values for the remaining 12 studies generally agree
with confidence interval results. Our placebo simulation Monte Carlo indicates approxi-
mately correct rejection frequencies for 5% nominal tests across all the studies where this
experiment is conducted. Finally, our synthetic outcome test rejects its no treatment effect
hypothesis for only two studies at 5% and a total of three at 10%.

Although we cannot implement Ibragimov-Müller inference with the full regression
specification for studies with smaller sample sizes, it is still informative to estimate specifi-
cations with less conditioning information to illustrate the prevalence of subsample slope
estimate variability across the large majority of studies. To conserve degrees of freedom

26We use the spatial basis tensor dimension (3x3 to 6x6) and number of PCs chosen by BIC for the full
sample, rather than attempt cluster-specific basis choice. We anticipate that our spatial basis will detrend
better with a full sample basis choice.
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Ratio of cluster−specific to full−sample estimates.
Red dots indicate clusters where effects have the opposite sign to the full sample one.

Starred studies have fewer than 250 observations.
The red line represents the full sample coefficient normalized to one.

Figure 8: Estimated treatment effects by cluster, expressed as a proportion of the full sam-
ple estimate. Starred entries, having fewer than 250 observations, do not appear in Table
5: they are partitioned into three clusters. Red dots denote clusters with the opposite sign
to the full sample one. Two thirds of studies at least one region with an opposite treatment
effect to the full sample one, and one exhibits Simpson’s Paradox: all clusters have the op-
posite sign to the full sample one. The axis is truncated at plus and minus five.
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IM p

CI Plac-
ebo

Plac
5%

Synth
Out

Clust-
ers

Acharya, Slavery. [-0.35, 0.34] 0.97 0.05 0.96 4
Alsan, Tsetse. [-1.45, -0.1] 0.04 0.05 0.03 5
Ambrus, Cholera. [-1.2, 0.62] . . 0.40 4
Bazzi, Individualism. [-0.03, 0.31] 0.06 0.04 0.07 4
Becker, Weber. [-0.12, 0.17] 0.77 0.03 0.92 5
Buggle, Serfdom. [-0.69, 0.4] 0.47 0.04 0.63 4
Caicedo, Mission. [-0.15, 0.32] 0.42 0.05 0.48 6
Dell, Mita. [-22.37, 11.19] . . 0.20 4
Drelichman, Inquisition. [-0.73, 0.35] 0.34 0.05 0.37 4
Enke, Kinship. [-0.71, 0.56] 0.71 0.04 0.87 4
Iyer, Raj. [-0.05, 0.22] . . 0.14 4
Michalopoulos, Precolonial. [-0.15, 0.64] 0.15 0.05 0.15 5
Montero, Saints. [-0.32, -0.06] . . 0.02 3
Nunn, Mistrust. [-0.03, 0.02] 0.53 0.05 0.55 3
Voigtlaender, Persecution. [-0.02, 0.04] . . 0.32 4

Confidence intervals and significance levels for the Ibragimov-Mueller procedure for studies with at least
200 observations. Empty placebo cells correspond to studies with binary treatments. Confidence intervals
for coefficients are based on the ratio of the coefficient in each cluster to the full sample one.

Table 5: Ibragimov-Müller confidence intervals and significance levels for regression esti-
mates, and placebo and synthetic outcome tests.

we use three k-medoids clusters and estimate each regression using only the full sample
BIC optimal number of spatial basis variables and the treatment variable of interest: other
control variables used above are omitted. While in many cases omitting controls does not
appreciably impact slope estimates, it is important to note that it can do so and the IM
treatment effect estimates may not be comparable to estimates with the full conditioning
information. Nevertheless, they illustrate the extent of subsample variability in the study’s
data in the context of an interesting regression.

Estimated cluster-specific coefficients are shown in Figure 8, with stars denoting stud-
ies with fewer than 250 observations, except for two studies with fewer than 60 observa-
tions that are not reported and Ashraf and Galor (2013) that does not allow IM inference
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because it uses a quadratic in the treatment variable.27 Full-sample treatment effect es-
timates are far enough from zero that they can be used as a normalizing factor to make
the scale of cluster-specific estimates roughly comparable across studies. Thus, the Figure
plots cluster-specific estimates divided by the full-sample treatment effect estimate. It is ev-
ident that these ratios often vary markedly by cluster with few studies having all estimates
close to unity. Inmost studies (18 out of 27) at least one regional group has a coefficients of
the opposite in sign to the full-sample one. This substantial variation of treatment effects
across clusters in Figure 8, suggests that these studies’ original reported findings should
be treated with caution. It can be seen that one study even displays Simpson’s paradox:
all regions have the opposite sign to the full sample.

8 Extensions and Conclusions

If your pickaxe unearths a large gold nugget every time it sinks into the ground, you may
eventually start to wonder about what sort of gold it is that you are finding in such abun-
dance. This paper originated in a concern that the unusually large t statistics that are the
hallmark of persistence literature were less evidence of deep historical processes than sta-
tistical artefacts arising from a failure to control for spatial trends and autocorrelation.

Reliable estimationwith spatial observations poses two challenges in the formof trends
or other large scale structure in the data, and of spatial autocorrelation. Standard error
corrections have received considerable attention in the econometrics literature (although
recent theoretical advances have been largely ignored by practitioners) but often require
that the data have already been detrended, an issue that has been largely neglected until
now.

In this paper we introduced a new regression procedure and two diagnostic tests. The
regression procedure was to add spatial basis variables to the regression, and then to es-
timate standard errors using a large cluster procedure. The first diagnostic was a placebo
test of no treatment effect using simulated treatments that have approximately the same
spatial correlation as the true treatment. This diagnostic is particularly useful in providing
a reliable, data driven means to evaluate tuning parameter choice for spatial correlation
corrections, in our case the number of chosen large clusters in BCH and IM. The second
synthetic outcome diagnostic tested the null hypothesis that the outcome was generated

27The cross-cluster variation of coefficients is still pronounced: the linear and quadratic terms for each clus-
ter, expressed as a multiple of the full sample ones, are (32.9, 1.5, 2.5) and (−3.0, 3.2, 1.7) respectively.
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was generated by a trend plus spatial noise process, with no true treatment effect. Apply-
ing these procedures to 30 historical persistence regressions, few remained significant at
even five per cent.

These procedures are applicable to regressions using spatial observations more gener-
ally. In particular, modern causal inference techniques are often applied to geographical
data, possibly resulting in estimated treatment effects with overstated precision regard-
less of validity of their identification strategies. Investigating this issue is left for further
research.
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BCH Estimate BCH Synth IM Confidence Interval IM Synth
Clusters 3 4 5 3 4 5 3 4 5 3 4 5

Ambrus 0.52 0.61 0.58 0.68 0.74 0.74 [-30.09, 28.09] [-4.14, 2.14] [-2.97, 0.97] 0.9 0.4 0.18
Dell 0.19 0.12 0.06 0.33 0.21 0.15 [-5.12, 3.12] [-4, 2] [-3.13, 1.13] 0.21 0.2 0.14
Iyer 0.34 0.33 0.2 0.43 0.41 0.26 [-1.9, 3.9] [-0.61, 2.61] [-0.35, 2.35] 0.27 0.14 0.11
LaPorta 0.14 0.07 0.06 0.21 0.12 0.11 . . . . . .
Voigtlaender 0.12 0.1 0.09 0.12 0.11 0.08 [-4.61, 6.61] [-1.75, 3.75] [-1.77, 3.77] 0.57 0.32 0.4
Montero, Saints. 0.02 0.07 0.02 0.01 0.06 0.02 [-1.57, -0.43] [-2.16, 0.16] [-1.76, -0.24] 0.01 0.05 0.01

Regression and synthetic outcome p-values using BCH and IM for studies with binary treatments where
placebo significance is not estimated. Results are given for 3, 4 and 5 k-medoids clusters.

Table A.1: Results for studies with binary treatments using 3 to 5 clusters.

Appendix A BasisRegressionResults for StudieswithBinaryTreat-
ments

For the BCH and IM results in Tables 3 and 5 we relied on 5% placebo Monte Carlos
to select the optimal number of clusters. However this was not possible with studies that
used binary treatments where placebos could not be calculated and in those cases we re-
ported results using four clusters. To examine the robustness of this assumption, Table 1
reports BCH and IM values using from three to five clusters. It is immediately evident that
changing the cluster size does not affect the estimates materially.

Appendix B Studies Examined.

Here we give details of the regressions we examined from the papers analysed above.
In every case, we chose the column of the table with the maximum number of controls
applied, and regional or country indicators if applicable.

Acemoglu, Johnson and Robinson (2001). “The Colonial Origins of Comparative Devel-
opment: An Empirical Investigation.” Table 3.1. Regress property rights on settler
mortality.

Acemoglu, Johnson and Robinson (2002). “Reversal of Fortune.” Table 3.1. Regress in-
come on urbanization in 1500. Robustness check is to add a dummy for Hong Kong.
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Alesina, Giuliano and Nunn (2013). “On the Origin of Gender Roles: Women and the
Plough.” Table 3.1. Regress women’s labour force participation on plough adoption.
Robustness check is to omit Iceland and Djibouti.

Alsan (2015). “The Effect of the TseTse Fly on African Development” Table 1.4. Regress
historical population density on tsetse fly suitability.

Ambrus, Field and Gonzalez (2020). “Loss in the Time of Cholera: Long Run Impact of
a Disease Epidemic on the Urban Landscape” Table 3.4. Regress rents on cholera
pump dummy.

Arbatli et al. (2020) “Diversity andConflict.” Table 1.8. Regress civil conflict on diversity.

Ashraf and Galor (2013). “The “Out of Africa” Hypothesis, Human Genetic Diversity,
and Comparative Economic Development” Table 3.6. Regress population density on
quadratic diversity testing the hypothesis that they have no joint effect.

Bazzi, Fiszbein and Gebresilasse (2020). “Frontier Culture: The Roots and Persistence
of "Rugged Individualism" in the United States” Table 2.2, top panel. Regress un-
common names on total frontier experience.

Becker and Woessmann (2009). “WasWeberWrong? AHumanCapital Theory of Protes-
tant Economic History” Table 3.4. Regress literacy on the percentage Protestant.

Comin, Easterly and Gong (2010). “Was theWealth of Nations Determined in 1000 BC?”
Table 8A.1. Regress income on technology level in 1000 BC. PC number changed
from 4 to 5.

Dell (2010). “The Persistent Effects of Peru’s MiningMita” Table 2.1, panel three. Regress
household consumption on Mita dummy.

Drelichman, Videl-Robert and Voth (2021) “The Long-run Effects of Religious Persecu-
tion: Evidence from the Spanish Inquisition.” Table 1.1. Regress GDP on inquisito-
rial intensity.

Enke (2019) “Kinship, Cooperation, and the Evolution ofMoral Systems”Table 3.3. Regress
kinship tightness on malaria ecology.
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Galor and Özak (2016). “TheAgricultural Origins of Time Preference” Table 1.2. Regress
long term orientation on crop yield. PC number changed from 5 to 3.

Giuliano and Nunn (2021) “Understanding Cultural Persistence and Change” Table 1.2.
Regress importance of tradition on climatic instability. PC number changed from 3
to 2.

Iyer (2010) “Direct versus Indirect Colonial Rule in India: Long Term Consequences” Ta-
ble 3.1. Regress fertiliser usage on British direct rule.

La Porta, de Silanes and Shleifer (2008). “EconomicConsequences of LegalOrigins” Ta-
ble 1.A.3. Regress creditor rights on a common law dummy.

Michalopoulos and Papaioannou (2013). “Pre-Colonial Ethnic Institutions” Table 3.8. Regress
nighttime illumination on political centralization. Robustness check is to replace log
distance from sea with a dummy for sites within 200 kilometres of coast.

Michalopoulos and Xue (2021) “Folklore.” Table 5.2. Regress trust on punishment of
tricksters. PC number changed from 3 to 4.

Montero and Yang (2022). “Religious Festivals and Economic Development: Evidence
from the Timing of Mexican Saint Day Festivals” Table 2A.5 Regress income on fes-
tival overlapping planting or harvesting.

Nunn (2008). “The Long Term Effect of the Slave Trade” Table 3.5. Regress GDP per
capita on slave exports. The robustness check is to add the share of population at
risk of malaria from Ashraf and Galor (2013).

Nunn and Wantchekon (2011). “The Slave Trade and the Origins of Mistrust in Africa”
Table 2.3. Regress trust in neigbours on slave exports. Robustness check is to add
dummies for three regions (Fon, Yoruba, and Ibo) corresponding roughly to the
main cities of western Nigeria: Lagos, Ibadan, and Port Harcourt.

Valencia Caicedo (2019). “The Mission: Human Capital Transmission, Economic Persis-
tence, and Culture in South America” Table 2.2. Regress modern literacy on distance
from a Jesuit mission.
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Voigtländer and Voth (2012). “Persecution Perpetuated: The Medieval Origins of Anti-
Semitic Violence in Nazi Germany.” Table 4.2. Regress Nazi vote share on pogroms.
The robustness check is to use a log dependent variable.

Schulz et al. (2019) “The Church, Intensive Kinship, andGlobal Psychological Variation”
Table 2.3, first row. Regress individualism on kinship intensity.

Spolaore and Wacziarg (2009). “The Diffusion of Development” Table 1.3. Regress GDP
per capita on genetic distance from the US.

Squicciarini (2020). “Devotion and Development: Religiosity, Education, and Economic
Progress in Nineteenth-Century France” Table 3.1. Regress industrial employment
on refractory clergy. PC number changed from 5 to 6.

Appendix C Online Appendix. Outline of Method.

Our approach involves four steps that are carried out as one line commands in the spatInfer
package.

1. Optimal spatial basis. Fromequation (8), usingpiecewise linear (triangle) B-splines,
construct the matrix of basis functionsMr for several tensors of differing dimensions
r = 3, 4, . . .. For eachMr, calculate its matrix of principal components Pr. Candidate
spatial basis models for each r will consist of sets of the firstLr principal components
ofMr for all values of Lr = 1, ..., r2. So there will r2 models for each value of r. The
whole set of models to choose from is the union of all models for all r. Run a set of
regressions of an outcome y upon each candidate spatial basis model. Select among
these spatial basis models using a BIC criterion.

2. Placebo Regressions. Estimate the model in (3) with a mean given by the BIC-
optimal combination of tensor and principal components from step 1 via maximum
likelihood. Use MLE estimates to generate placebo treatment draws from the esti-
mated distribution. For each simulation, run a regression using the simulated treat-
ment in place of real treatment plus BIC-optimal spatial basis and other control vari-
ables. The resulting collection of simulated t-statistics forms the reference distri-
bution for the placebo test of no treatment effect. The fraction of simulations with
nominal p-values lower than 5% gives a Monte Carlo test of the inference procedure.
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The number of clusters in BCH and IM are chosen as the largest number of clusters
to have close to 5% Monte Carlo rejections, we use less than 8% as the operational
definition of close. Points are allocated to clusters by k-medoids. Cluster allocations
are manually checked to rule out pathological cases, e.g. with European countries,
Iceland being a cluster of its own or clusters with large numbers of boundary ob-
servations (relative to their interior).28 Clusters are also checked for having a large
enough number of observations for within-cluster averages to be approximately nor-
mally distributed. Too small clusters can be aggregatedwith others or the k-medoids
algorithm re-run choosing fewer clusters. If large enough clusters have quite differ-
ent sample sizes, we recommend using IM.

3. Synthetic Outcome Regressions. Regress the true outcomes on a quadratic in lon-
gitude and latitude rather than the spatial basis. Obtain MLE estimates of the dis-
tribution of residuals just as was done for placebo treatments. Generate draws of
synthetic outcomes by taking draws from the estimated residual/error distribution
and adding them to the estimated quadratic trend. Then re-run regressions for each
simulation and the resulting set of simulation t-statistics forms the reference distri-
bution for the synthetic outcome test of no treatment effect.

4. Spatial Basis Regression. FromStep 1we know the BIC-optimal spatial basisPrl and
add this to the regression of interest. From Step 2 we know awell-performing choice
of BCH or IM clusters so utilize this number of k-medoids clusters in performing
large cluster inference.

28This could happen for example with sample locations being on three equal-length horizontal line seg-
ments with slight perturbations up and down. A k-medoids choice of two clusters could be (a) all points
on the top line and randomly about half on the middle segment and (b) all points on the bottom line and
the other half of the middle segment points. These two clusters would share a large boundary comprised of
middle segment locations.
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Appendix D Online Appendix. Diagrams of Changing Basis Di-
mension for All Studies.
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