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Abstract 

This paper examines the precision of estimators of Quantile-Based Risk Measures 

(Value at Risk, Expected Shortfall, Spectral Risk Measures). It first addresses the 

question of how to estimate the precision of these estimators, and proposes a Monte 

Carlo method that is free of some of the limitations of existing approaches. It then 

investigates the distribution of risk estimators, and presents simulation results 

suggesting that the common practice of relying on asymptotic normality results might 

be unreliable with the sample sizes commonly available to them. Finally, it 

investigates the relationship between the precision of different risk estimators and the 

distribution of underlying losses (or returns), and yields a number of useful 

conclusions.  
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1. INTRODUCTION 

 

Since they arose in the early 1990s, risk managers have come to rely heavily on 

models that forecast the risks associated with financial portfolios. Often known as 

Value-at-Risk (VaR) models, these models in fact can and sometimes do forecast the 

complete density functions of prospective financial losses (or, equivalently, financial 

returns). The outputs of these models can then be used to forecast a variety of 

different measures of financial risk: these include measures such as the VaR and the 

Expected Shortfall (ES), but also families of risk measures such as coherent, spectral 

and distortion risk measures.
1
 However, these risk forecasts are inevitably open to 

error – the density functions might be misspecified (giving rise to model risk), and 

model parameters are unknown, which forces risk managers to rely on estimated 

parameters and exposes them to parameter risk – and it is therefore important that risk 

managers have some idea of the precision or accuracy of the forecasts on which they 

are relying.  

 This paper investigates this issue, and addresses three particular questions 

related to the precision of risk forecasts:  

• How can we estimate the precision of different risk forecasts? This is not a new 

question, and there is considerable literature on it (see section 3 below). 

However, as we shall see, existing approaches are limited in a number of ways, 

and the present paper proposes a more flexible Monte-Carlo approach that is 

free of many of the limitations of the approaches proposed so far.  

• What do we know of the distributions of estimators of financial risk measures? 

In fact, we know from existing statistical theory that these distributions are 

asymptotically normal, and practitioners often rely on such asymptotic results as 

practical short-cuts. Unfortunately, we do not know how large the sample sizes 

must be for asymptotic results to be taken seriously. Thus, investigating the 

finite sample properties of these estimators is of considerable practical 

importance. 

• What can we say about the relationship between the precision of risk forecasts 

and the underlying loss (or return) density function? So, for example, can we say 

                                                 
1 Dowd (2005, ch. 2) has an overview of these different risk measures and their properties.   
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anything about how estimates of precision might be affected by factors such as 

skewness or tail heaviness in the underlying loss distribution? This is a very 

difficult question to answer in a general way, but we suggest a procedure that 

provides some useful insights into these issues and into related questions such as 

the relative precision of estimators of different financial risk measures.  

 This paper is organized as follows. Section 2 discusses the risk measures to be 

considered: the VaR, the Expected Shortfall, and the Spectral Risk Measures 

(SRMs).
2
 Section 3 discusses the existing literature on the precision of estimators of 

financial risk measures, and section 4 discusses alternative estimators of precision. 

Section 5 sets out our methodology for evaluating the precision of our risk-measure 

estimators, and section 6 looks into the difficult issue of the relationship between the 

precision of these estimators and the underlying loss (or return) distribution. Section 7 

concludes. 

 

2. ALTERNATIVE RISK MEASURES 

 

Suppose our underlying random variable is the realised daily loss (which is positive 

for an actual loss, and negative for a profit) on a portfolio. If the confidence level is 

α , our first risk measure is the VaR at this confidence level, i.e.: 

 

αα qVaR =                                                        (1) 

 

where αq  is the α -quantile of the loss distribution. The VaR is the most widely used 

financial risk measure, but has been heavily criticized in recent years for some of its 

properties (e.g., its lack of subadditivity; see, e.g., Artzner et al., 1999). Note, 

therefore, that the VaR is defined in terms of a conditioning parameter, the confidence 

level, the value of which usually needs to be specified – more or less arbitrarily – by 

the user. 

 Our second risk measure is the ES, which can be defined as the average of the 

worst α−1  of losses. In the case of a continuous loss distribution, the ES is given by: 

                                                 
2
 The risk measures considered include those most commonly used by financial risk measures. 

Distortion risk measures have a different epistemological foundation and are widely used in actuarial 

circles. They are closely related to coherent risk measures and many risk measures – such as the ES – 

are members of both the coherent and distortion families.   
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The ES gives equal weight to each of the worst α−1  of losses and no weight to any 

other observations. The ES is superior to the VaR in a number of respects (e.g., it is 

subadditive and coherent). However, the ES is specified in terms of the same 

conditioning parameter as the VaR and, as with the VaR, there is often little to tell us 

what value this parameter should take. 

 Our third measure is a Spectral Risk Measure (SRM). Following Acerbi 

(2002), consider a risk measure φM  defined by: 

 

                                              ∫=
1

0

)( dppqM pφφ                 (3) 

 

where )( pφ  is a weighting function defined over p, the cumulative probabilities in the 

range between 0 and 1. Borrowing from Acerbi (2004, proposition 3.4), the risk 

measure φM  is coherent if and only if )( pφ  satisfies the following properties: 

• Positivity: 0)( ≥pφ , i.e., weights are always non-negative. 

•  Normalisation: ∫ =
1

0

1)( dppφ , i.e., weights sum to one.  

• Increasingness: 0)( ≥′ pφ , i.e., higher losses have weights that are higher than 

or equal to those of smaller losses.
3
 

We now need to specify a suitable weighting function )( pφ , and a good 

choice is the following exponential function: 
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3
 Strictly speaking, Acerbi’s proposition refers to a more general class of risk measures, whereas we are 

concerned only with those measures that Acerbi defines as non-singular risk measures (i.e., we are not 

concerned with the singular risk measures that he mentions and then dismisses as uninteresting). 
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where the coefficient k is the user’s degree of absolute risk aversion. The function 

)( pφ  can also be interpreted as the user’s risk-aversion function. The user’s risk 

aversion means that higher losses attract higher weights than small losses, and the 

more risk-averse the user, the more rapidly the weights will rise. The risk measure 

itself then can then be obtained by substituting (4) into (3), viz.: 
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Thus, an SRM has the attractive property that it takes account of the user’s risk 

aversion. Furthermore, an SRM based on an exponential risk-aversion function is 

predicated on a single conditioning factor, the user’s degree of absolute risk aversion. 

And, unlike the earlier conditioning parameter, the value of this parameter is unique 

(i.e., because it is determined by the user’s risk-aversion).  

 

3. EXISTING LITERATURE ON THE PRECISION OF RISK ESTIMATORS 

 

Naturally, we never actually know the values of our risk measures in practice, because 

the parameters of the loss distribution will be unknown. (This is true even in the 

favourable unlikely case where the form of the distribution itself is known, but we 

will ignore this issue here.) We must therefore work with estimates of these 

parameters, and this means that we must deal with estimators of our risk measures. 

(We will henceforth call these “risk estimators” for short, to avoid the correct but 

ungainly term “risk-measure estimators”.) This then raises a key question: how can 

we evaluate the precision – or more loosely, the accuracy – of risk estimators? 

 Before we begin to answer this question ourselves, we should first consider 

the answers provided in established literature, and the principal findings of 22 studies 

in this literature are summarised in Table 1.
4
 This shows that existing studies differ 

enormously in how they have addressed the precision issue. It also shows that many 

of these studies are limited in one way or another: 

• The majority of them only apply to one risk measure, and typically the VaR.  

                                                 
4
 We would emphasize too that the selection of studies shown in this Table is at best a good illustration 

of the existing literature, and is by no means selective. The Table also omits studies that have looked at 

precision from a Bayesian perspective (e.g., Dowd, 2000; Siu et ali, 2001).  
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• Some approaches are limited to a single distribution (e.g., Jorion (1996) and 

Chappell and Dowd (1999) require that losses be normal).   

• A number of approaches only give estimates of standard errors (i.e., and do not 

give confidence intervals). However, as discussed in the next section, standard 

errors can give misleading impressions of the precision of risk estimators.  

• A considerable number of approaches are based on asymptotic theory, and 

asymptotic results might not be appropriate with the sample sizes that 

practitioners often have to work with.
5
  

  

Insert Table 1 here 

 

Some studies also report results on the relative precision of different risk estimators. 

For example, several studies find that VaR and ES estimators have comparable 

precision when loss distributions are normal or close to normal, but ES estimators 

decline in precision relative to VaR estimators as tails become heavier (e.g., Yamai 

and Yoshiba (2002), Acerbi (2004)). However, such findings are essentially 

illustrative and one of the purposes of the present study is to shed more light on these 

and related issues. 

 

4. PRECISION ESTIMATORS AND THE DISTRIBUTION OF RISK 

ESTIMATORS 

 

We also we need to consider how to estimate precision itself. One obvious way to do 

so is to estimate the standard error (SE) of a risk estimator. The SE is helpful in its 

own right as a (rough and ready) estimate of precision, and can also be used to 

construct confidence intervals using textbook formulas. However, as Yamai and 

Yoshiba (2002) note, comparisons of the SEs across a set of different risk measures 

are complicated by the fact that the different risk measures considered typically have 

different values. For example, the SE for risk measure A might be larger than the SE 

for risk measure B, so in such circumstances it does always make sense to say that 

                                                 
5
 Nor is this list of limitations exhaustive. The majority of them also apply to unconditional risk 

estimators (although some exceptions are McNeil and Frey (2000), Giannopoulos and Tunaru (2004) 

and Chen and Tang (2005)). Exactly how conditional dependence would affect precision is, as yet, a 

difficult question to answer. 
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risk measure A is estimated less precisely than risk measure B? The answer is 

obviously ‘no’: the first risk measure might have a much bigger value than the 

second, and its SE might be only marginally bigger than that of the second risk 

measure. In this case, the ‘absolute’ SE for A would be larger than that of B, but in 

relative terms – that is, relative to the value of the risk measure itself – A is estimated 

more precisely than B. We should therefore estimate precision taking account of the 

estimated value of the risk measure, and can do so by working with a ‘standardized’ 

SE rather than an ‘absolute’ SE, i.e., we work with the SE divided by a point estimate 

of the relevant risk measure.
6
 

 A second precision estimator is a confidence interval. A confidence interval is 

often more helpful than an SE because it can give a more ‘complete’ picture of 

precision: it can take more account of the distribution of risk estimators and so allow 

for factors such as asymmetries, heavy-tails, etc., that can cause the SE to give a 

‘misleading’ impression of precision.  However, as with SEs, comparison of ‘raw’ 

confidence intervals can be problematic when the risk measures themselves have 

different values, so we work here with confidence intervals in standardized form, i.e., 

with ‘raw’ confidence intervals divided by point estimates of risk measures. 

 It is also useful to examine the related issue of the distribution of the risk 

estimators themselves. In fact, it is well-known in the statistical literature that linear 

combinations of order statistics are asymptotically normally distributed (see, e.g., 

Stiegler (1974), Mason (1981)), and this result implies that estimators of all three of 

our risk measures should be asymptotically normal. However, knowing that the 

distribution of risk estimators approaches normality in the limit as our sample size 

gets large does not tell us whether it is safe to assume that they are normally 

distributed for any given (finite) sample size: we don’t know how quickly the 

estimators converge to normality as the sample size increases. Hence, if we are 

thinking of using asymptotic results, it is prudent to check if the distribution of risk 

estimators is ‘close enough’ to normality to allow those results to apply.  

 Such information is also important in determining the usefulness of several 

alternative precision estimators: 

                                                 
6
 However, standardization is not without its drawbacks as we can get meaningless results when the 

risk estimator goes to zero. 
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• The SE as a precision indicator implicitly presupposes that the distribution is 

symmetric, and where distributions are asymmetric, we really need an 

alternative indicator that allows for this asymmetry. 

• The SE is often used as an input to textbook formulas for confidence intervals, 

but this practice is only defensible if the underlying risk estimators are suitably 

‘well-behaved (e.g., symmetric, and normally or t distributed), and this ‘well-

behavedness’ condition might not hold empirically. Where such assumptions do 

not hold, we should use properly constructed confidence intervals (e.g., Monte 

Carlo-based intervals) instead. 

 

5. METHODOLOGY 

 

We wish now to get some sense of how the precision of risk estimators varies across 

the different types of risk measure.  However, this task is complicated by: (a) the 

variety of precision estimators available; (b) the possibility that results will depend on 

sample size and/or the conditioning parameter; and (c) the likelihood that results will 

depend on the underlying loss distribution (e.g., results might depend on the skewness 

or kurtosis of this distribution). Handling (a) and (b) is relatively straightforward, but 

dealing with (c) is more difficult because we cannot search over every plausible loss 

distribution. We therefore need a meaningful way to restrict our search, whilst also 

attempting to draw out conclusions of (hopefully) more general validity. 

 We also need some way of organising the search. One reasonable approach is 

based on the principle that we start from a simple benchmark distribution and get 

some sense of the precision of the different risk estimators in this benchmark case. A 

simple and well-understood (and therefore natural) benchmark is a standard normal 

distribution. We then need some way of generalising from this benchmark case to see 

how generalisation might affect our results. We would suggest thinking of 

generalisation in terms of the successive relaxation of the moment restrictions implied 

by our chosen benchmark (i.e., that the mean should be 0, the variance should be 1, 

the skewness should be 0 and the kurtosis should be 3). We initially generalise by 

relaxing the first and second moment (i.e., mean and variance) restrictions, and so 

move from a standard normal to an unrestricted normal. After this, we generalise 

further by successively relaxing the third and fourth moment (i.e., skewness and 
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kurtosis) restrictions. Naturally, we recognise that there are different ways of relaxing 

these moment restrictions, and there is no uniquely ‘best’ way to do: all we can do 

here is suggest a plausible procedure and then regard any conclusions we draw from 

this analysis as tentative hypotheses that would be subject to confirmation (or 

rejection) by later studies.  

 The precise approach is as follows. We first select a range of sample sizes, and 

in this paper we choose n equal to 250, 500, 1000 and 2000. These values correspond 

to sample sizes of 1, 2, 4 and 8 trading years at 250 trading days to a year: this is a 

good range, because risk practitioners would not usually work with sample sizes that 

are less than 1 trading year or more than 8 trading years. In fact, many practitioners 

would work with sample sizes of 250 or 500, so it is the shorter end of the sample 

range that we should mainly be interested in. We then select some illustrative 

parameter values for our risk measures (i.e., we choose values for the confidence level 

for our VaR and ES risk measures, and values for the coefficient of absolute risk 

aversion in the case of our SRM). We chose fairly standard confidence-level values of 

90%, 95% and 99%, and we chose a fairly wide range of ARA values equal to 5, 25 

and 100. Having made these calibrations, we then implement the following three-

stage procedure. 

• Stage One: We select a standard normal benchmark and assume that losses are 

standard normal. We then estimate the precision of our different risk estimators 

using our two different precision estimators across the range of selected sample 

sizes, and thence evaluate how the precision of our risk estimators in the standard 

normal case changes as we alter the way that precision is measured and as we vary 

the sample size. 

• Stage Two: We then consider how our results might change in the face of changes 

in the mean µ  and standard deviation σ  of portfolio losses. More specifically, 

we compare the cases of )1,5( == σµ  and )5,0( == σµ  against our standard 

normal benchmark )1,0( == σµ . The former gives an example of a non-standard 

mean, and the latter an example of a non-standard variance. Given that the normal 

is ‘well-behaved’ and well understood, these two alternative cases should suffice 

to give a fairly complete picture of the sensitivities of results to changes in  µ  and 

σ .   
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• Stage Three: Given that the normal restricts the skewness and kurtosis to 0 and 3 

respectively, we now select two convenient cases involving skewness and excess 

kurtosis. More particularly, the impact of skewness is examined by selecting a 

two-part normal (2PN) distribution, where the latter is calibrated to produce a 

skewness of about 0.492.
7
 Comparing this 2PN against the standard normal gives 

us a comparison between a distribution that has no skew and one that has a fairly 

pronounced skew, and this range of skewnesses encompasses those commonly 

observed in financial returns. The impact of excess kurtosis is captured by a zero-

mean, unit-standard deviation t distribution with 5 degrees of freedom.
8
 This 

distribution has a kurtosis of 9, which is higher than the kurtoses usually reported 

for financial returns. Thus our comparison of the t and the standard normal implies 

that we are comparing a range of kurtoses from 3 to 9, and this range includes the 

kurtoses usually found for financial returns.  

 All calculations were carried out using parametric Monte Carlo simulation 

with 10000 simulation trials in each case: we run 10000 trials under the specified loss 

distribution, and estimate the various risk measures from the ‘sample’ order statistics 

generated in each trial;
9
 we then estimate the (standardised) SE and (standardised) 

confidence interval from the 10000 sets of ‘sample’ risk estimates obtained in this 

way. 

 

                                                 
7
 The 2PN can be represented in various ways, but the particular distribution chosen here is the 

( 21,, σσµ ) representation of the 2PN with ,0=µ  3.11 =σ  and 65.02 =σ . These parameter values 

ensure that our 2PN has zero mean, unit variance, a skewness of about 0.492 and a ‘small’ (and 

hopefully negligible) excess kurtosis (equal to 0.148). For more on this distribution, see John (1982). 

8
 This distribution has a pdf equal to vv /)2( −  times the pdf of a Student-t with v  degrees of 

freedom (taken in our calibrations to be 5). This distribution has zero mean, unit variance, zero skew, 

and (provided 4>v , which is necessary for the kurtosis to exist) a kurtosis equal to )4/()2(3 −− vv . 

For more on the Student-t, see Evans et alia (2000, p.180). 

9
 To be more precise: if we want the quantile or VaR at the, say, 90% confidence level, and we have 

1000 loss observations in our simulated sample, we follow the usual practice and take this 

quantile/VaR estimate to be the 101
st
 highest loss observation; and we then take the ES estimate as the 

average of the 100 highest loss observations. More generally, for a confidence level α and sample size 

n, we take the quantile/VaR at the α confidence level to be equal to the (1-α)n+1
st
  sample order 

statistic. The SRM estimate is then taken as the suitably weighted average of our VaR/quantile 

estimates.      
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6. RESULTS 

 

Stage One: Standard Normal Losses 

We begin by examining the distributions and precision measures of our risk 

estimators under standard normality.  

 

VaR results 

The results reported in Table 2 suggest that the standard normal VaR estimators have 

the following properties: 

• Their means rise with α  and are invariant to n, as expected. 

• Their standard errors rise with α  and fall with n , as expected.  

• Their  skewnesses tend to be positive, rise with α , fall with n , and go to zero as 

n gets large.  

• Their kurtoses tend to exceed the normal kurtosis (i.e., 3), rise with α , fall with 

n , and approach 3 as n gets large. 

• Their Jarque-Bera (JB) test results are not supportive of normality, except where 

α  is low and n high. 

• The precision results indicate no clear pattern as α  rises (which is perhaps a 

little surprising given that we might have expected that precision would 

consistently fall with the high values of α  that we are considering), but they do 

indicate that precision rises with  n (which is what we would expect). 

 

Insert Table 2 here 

 

The third, fourth and fifth findings suggest that VaR estimators tend to 

normality as n gets large, but they also approach normality more slowly as α  gets 

larger. This impression is confirmed by Figure 1, which shows histograms for the 

90% and 99% VaRs for sample sizes of 250 and 500. This Figure indicates that the 

99% VaR estimators are notably non-normal, especially for the smaller sample size: 

they also indicate that the convergence of 99% VaR estimators to normality is slow. 

This suggests that, with the sample sizes often available, practitioners would be 

unwise to assume that VaR estimators are normally or even close to normally 
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distributed, i.e., in particular, they should be wary of using results based on 

asymptotic normality theory.  

 

Insert Figure 1 here 

 

This conclusion also has two other useful corrolaries. (1) If the distribution of 

VaR estimators is not symmetric, then practitioners should not use the SE as a 

precision measure. (2) If the distribution of VaR estimators is not normal, then 

practitioners should be careful about estimating VaR confidence intervals by inserting 

estimates of SEs into textbook formulas for confidence intervals, because those 

formulas might not apply. 

 

ES results 

The ES results reported in Table 3 and illustrated in Figure 2 are similar to the VaR 

ones in most ways (e.g. they generally exhibit a positive skewness, have comparable 

precision, etc.) and the only other noteworthy features are the following: 

• The skewness, kurtosis and JB results usually suggest that ES estimators are a 

little ‘closer to normal’ than the earlier VaR estimators. 

• The precision measures are now ‘well-behaved’ in the sense that they indicate 

that precision falls with α  as well as rises with n. Taken together, these first two 

bullet points suggest that ES estimators are a little ‘better behaved’ than VaR 

estimators.  

• Most importantly, in  this standard normal case, the precision of ES estimators is 

of much the same order of magnitude as that of VaR estimators. 

 

Insert Table 3 here 

Insert Figure 2 here 

 

SRM results 

The corresponding results for the SRM risk measure are shown in Table 4 and 

illustrated in Figure 3. These suggest that the ARA coefficient plays much the same 

role in SRMs as the α  parameter plays with the VaR and ES. These results are 

broadly similar to the earlier ones, and it is particularly interesting to note that 
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estimators of all three risk measures have similar precision. These results also 

suggest that SRM estimators tend to be a little bit closer to normal than the ES 

estimators, and are certainly closer to normal than the VaR estimators.  

 

Insert Table 4 here 

Insert Figure 3 here 

 

 

Stage Two: Non-Standard Normal Losses (Impact of Mean and Variance) 

Having established results for the benchmark case where losses are standard normal, 

we now investigate how results might change as we allow for changes in the mean 

and standard deviation. To do so, we compare results based on three hypothetical sets 

of parameter values: 0=µ  and 1=σ  (our benchmark case); 5=µ  and 1=σ ; and 

0=µ  and 5=σ . A comparison of the first and second cases allows us to investigate 

the impact of a change in µ ; and a comparison of the first and third cases allows us to 

investigate the impact of a change in σ . 

 Our results are clear. For all risk measures, changes in the mean and/or 

standard deviation have no impact on the higher moments of the distribution of risk 

estimators (and therefore have no impact on the skewness, kurtosis and JB test 

results). Furthermore, changes in the mean and standard deviation have the impacts 

we might expect on a priori grounds. More specifically, we get the following results, 

given in Table 5 to 7: 

 

An increase in µ : 

• impacts the means of the risk estimators pari passu (in the cases of VaR and ES) 

or close to pari passu (in the case of the SRMs); 

• has a ‘small’ negative impact on the standard error, which declines as n gets 

larger; and 

• has a ‘moderate’ widening impact on the confidence intervals, and this impact 

declines as n gets larger. 

 

An increase in σ : 
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• leads to major increases in the means of the risk estimators, and these increases 

are of broadly the same order of magnitude across the different risk measures 

and are greater for higher α ; and 

• leads to the same precision estimates as in the standard normal case. Thus 

precision estimators are ‘well behaved’ and are of broadly the same magnitude 

across the risk measures. 

Drawing these findings together, perhaps the most significant conclusion is 

that for normally distributed losses, estimates of precision are of much the same order 

of magnitude across the different types of risk estimator.
10

  

 

Insert Table 5 here 

Insert Table 6 here 

Insert Table 7 here 

 

Stage Three: Non-Normal Losses (Impact of Skewness and Kurtosis) 

 

Impact of skewness 

The skewness results are presented in Tables 8. These are presented as the relevant 

2PN estimate divided by the corresponding standard normal estimate. This format 

makes it easy to see the impact that skewness makes. These results paint a very clear 

picture, i.e., introducing skewness:  

• has a notably positive impact on the standard errors;  

• has a negligible effect on the width of the confidence intervals; 

and these results hold for all risk estimators.  

 

Insert Table 8 here 

 

Impact of kurtosis 

Tables 9 give the corresponding kurtosis results, in this case expressed as the ratio of 

the precision estimates generated under our specified t distribution divided by the 

                                                 
10

 These findings should be no surprise given that the normal is so well-understood. Nor should it be 
any surprise that some of these results have also been established analytically: for example, McNeil et 

alia (2005, pp. 39, 45) provide analytical results showing how the unrestricted normal VaR and ES are 

related to their standard normal counterparts.   
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corresponding estimators generated under the standard normal. The main highlights 

are: 

• Risk estimators under the t-distribution are always less precise than their 

counterparts under standard normality, and this suggests that excess kurtosis 

makes risk estimators less precise.  

• Increasing the conditioning parameter (i.e., depending on the risk measure, the 

confidence level or the degree of risk aversion) makes risk estimators under 

the heavy-tailed distribution less precise, relative to their counterparts under 

standard normality.  

• By and large, the ratios are somewhat higher for the ES and SRM estimators. 

This suggests that tail heaviness has a greater (though not much greater) 

deleterious effect on the precision of ES and SRM estimators than on the 

precision of VaR estimators.  

 

Insert Table 9 here 

 

7. CONCLUSIONS 

 

This paper addresses three main issues. The first is the question, how can we estimate 

the precision of different risk estimates? Various methods have been suggested in the 

existing literature, but many existing methods are subject to significant limitations: 

they apply to one risk measure only (typically the VaR), or are limited to specific 

distributions (e.g., the normal distribution), or only give estimates of standard errors 

(i.e., and don’t give estimates of confidence intervals), or rely on asymptotic theory 

(which may not be appropriate empirically). We suggest an approach based on Monte 

Carlo simulation that is free of the above limitations.
11

  

 The second issue addressed is the distribution of risk estimators. We know 

from existing statistical theory that the distribution of risk estimators is asymptotically 

normal. However, this theory does not tell us how quickly estimators converge to 

                                                 
11

 As hinted at in footnote 5, a limitation of our approach is that we restrict our attention to 

unconditional estimators and ignore time dependence in losses or returns. We believe that most of our 

findings would also apply to conditional estimators that take account of time dependence (see the next 

note), but investigating the impact of such extensions would be an involved task beyond the scope of 
our present study. Another limitation worth pointing out is that we do not consider how estimators 

might be improved using variance-reduction methods. For on this latter issue, see Inui and Kijima 

(2004). 
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normality, and the results presented here indicate that this convergence is sufficiently 

slow that practitioners working with 1-day forecast horizons will often not have 

samples long enough for them to invoke asymptotic normality. Thus, for most 

practical purposes we cannot rely on risk estimators to be normally distributed with 

the sample sizes often available.
 12

   

 The final issue addressed is the question of how the precision of risk 

estimators might be affected by the underlying loss distribution. This is a very 

difficult question to answer in a general way, but we suggest a procedure that 

highlights the moments of the loss distribution: we start with a standard normal which 

restricts what each of the first four moments should be; we then relax each of these 

moment restrictions in turn and see what effect the relaxation has on our precision 

estimates. This procedure generates some insightful results, including the following: 

• When the loss distribution is normal, estimators of all three risk measures have 

similar precision.  

• The impact of skewness on precision depends on how we measure precision: 

introducing skewness has a noticeable positive impact on (standardized) 

standard errors, but no notable impact on (correctly estimated standardized) 

confidence intervals. 

•  Introducing excess kurtosis into the loss distribution has the effect of making all 

risk estimators less precise than they were, and it reduces the precision of ES 

and SRM estimators somewhat more than it reduces the precision of VaR 

estimators.  

Of course, we recognise that these results were obtained for specified distributions, 

and it is possible that a different set of distributions might lead to somewhat different 

conclusions. We therefore offer these conclusions as tentative hypotheses – albeit 

plausible hypotheses – that other researchers might wish to investigate further.  

 

                                                 
12

 These results were generated under the assumption of unconditional normal losses. However, 

statistical intuition would suggest that our results about the distribution of risk estimators are likely to 

be robust: for example, if losses are heavier tailed than the normal, or conditionally distributed, then we 

would often expect these changes to slow down the convergence to normality even further. Thus, if 
anything, we would suggest that our results about the slowness of convergence to asymptotic normality 

are likely to be over-optimistic, and this would reinforce our warning about the dangers of invoking 

asymptotic results in a practical risk measurement context.  
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FIGURES 

 

FIGURE 1: DISTRIBUTIONS OF STANDARD NORMAL VAR 

ESTIMATORS 
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Notes: Based on 10000 iid Monte Carlo simulations using a N(0,1) loss distribution, with the VaR 

estimators taken as the relevant order statistic from each trial sample. s and k are the estimated 

coefficients of skewness and kurtosis.  
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FIGURE 2: DISTRIBUTIONS OF STANDARD NORMAL ES ESTIMATORS 
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Notes: Based on 10000 iid Monte Carlo simulations using a N(0,1) loss distribution. s and k are the 

estimated coefficients of skewness and kurtosis.  
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FIGURE 3: DISTRIBUTIONS OF STANDARD NORMAL SRM 

ESTIMATORS 
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Notes: Based on 10000 iid Monte Carlo simulations using a N(0,1) loss distribution. s and k are the 

estimated coefficients of skewness and kurtosis.  
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TABLES 
 

TABLE 1: STUDIES THAT HAVE ADDRESSED THE PRECISION OF RISK ESTIMATORS 

Study Relevant Findings 

Kendall and Stuart (1972) Derives formula for asymptotic variance of quantile estimator: for quantile x at confidence level α  and density )(xf , this variance is 

))]([/()1(
2

xfnαα − . 

Reiss (1976) Deals with asymptotic expansions for variance of sample quantiles; more accurate than Kendall-Stuart formula, but not so tractable. 

Jorion (1996) Obtains standard error formula for quantile where losses are normally distributed. 

Pritsker (1997) Examines precision of VaR estimators using Monte-Carlo simulation. 

Butler and Schachter (1998)  Proposes kernel and bootstrap methods to estimate the precision of VaR estimators. 

Chappell and Dowd (1999) Uses variance-ratio theory to obtain confidence intervals for normal VaR. 

Gourieroux et alia (2000) Show asymptotic normality of kernel estimators of VaR. 

McNeil and Frey (2000) Uses profile maximum likelihood to estimate confidence intervals for VaR.  

Dowd (2001) Uses order-statistics theory to obtain confidence intervals for VaR. 

Mausser (2001) Uses L-estimators to improve precision of VaR estimators. 

Yamai and Yoshiba (2002) Obtains formulas for asymptotic standard deviations of VaR and ES estimators. Provides simulation results for stable Paretian distributions 

suggesting that VaR and ES estimators have comparable precision for moderately sized tails, but ES estimator becomes much less precise 

relative to VaR estimators as tails become heavy. 

Acerbi (2004) Obtains asymptotic variances of estimators of VaR, ES and SRM. Provides simulation results for lognormal and power-law distributions 

suggesting that VaR and ES estimators have comparable precision for moderately sized tails, but ES estimator declines in precision 

relative to VaR estimators as tails become heavy.  

Giannopoulos and Tunaru 

(2004) 

Applies filtered historical simulation to obtain standard errors of VaR and ES. Empirical results suggest that ES estimators are 

considerably less precise than VaR estimators. 

Inui and Kijima (2004) Proposes extrapolation method to increase the accuracy of VaR and ES estimators. Presents results for t distributions showing that 

ordinary VaR estimators can be strongly biased, and this bias increases as tails become heavier.  

Scaillet (2004) Shows asymptotic normality of kernel estimators of ES. 
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Chen (2005)  Suggests an improved kernel method for the estimation of ES.  

Chen and Tang (2005) Examines standard errors of nonparametric VaR estimators for dependent financial returns. 

Dowd (2005)  Extends Dowd (2001) to obtain confidence intervals for ES.  

Manistre and Hancock (2005) Derives asymptotic variance of ES estimator, and suggests that this has good finite-sample properties. Discusses how ES estimators can be 

made more accurate using variance-reduction methods. 

McNeil et alia (2005) Provides some analytical results for VaR and ES. 

Cotter and Dowd (2006)  Applies a parametric bootstrap approach to estimate extreme risks for VaR, ES and SRMs for equity futures data. Results suggest that ES 

is estimated relatively more precisely than VaR, but that SRM estimators are notably less precise than estimators of VaR or ES.  

Gourieroux and Liu (2006) Provides general formula for asymptotic distribution of nonparametric estimator of distortion risk measures. Provides a number of 

formulas for variances of VaR and ES estimators for special-case distributions.  
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TABLE 2: RESULTS FOR STANDARD NORMAL VALUE AT RISK 
                  

(a) MOMENT RESULTS 

    α  n=250  n=500 n=1000 n=2000     

    Means     

    0.9 1.267 1.2739 1.278 1.2802     

    0.95 1.6409 1.6333 1.639 1.6425     

    0.99 2.3169 2.2867 2.3063 2.3161     

    Standard deviations      

    0.9 0.1086 0.0752 0.0544 0.0385     

    0.95 0.134 0.0927 0.066 0.0469     

    0.99 0.2324 0.1624 0.1151 0.0823     

    Skewnesses     

    0.9 0.0779 0.0897 0.06 0.0182     

    0.95 0.132 0.0922 0.0948 -0.004     

    0.99 0.4563 0.2774 0.1857 0.1461     

    Kurtoses     

    0.9 3.0633 3.0227 3.0891 2.9468     

    0.95 3.1111 3.0523 3.0583 3.1139     

    0.99 3.5354 3.2659 3.0265 3.0587     

    Jarque-Bera prob-values     

    0.9 0.0028 0.0011 0.0095 0.42     

    0.95 0 0.0005 0.0003 0.0662     

    0.99 0 0 0 0     

                  

(b) PRECISION MEASURES 

Standardised standard errors 

    α  n=250 n=500 n=1000 n=2000     

    0.9 0.0857 0.0591 0.0426 0.0301     

    0.95 0.0817 0.0568 0.0403 0.0285     

    0.99 0.1003 0.071 0.0499 0.0356     

Bounds of standardised 90% confidence intervals 

α  n=250 n=250 n=500 n=500 n=1000 n=1000 n=2000 n=2000 

 LB UB LB UB LB UB LB UB 

0.9 0.8605 1.1447 0.9048 1.0991 0.9306 1.0707 0.9506 1.0494 

0.95 0.8706 1.1367 0.9079 1.0964 0.9342 1.0679 0.9529 1.0466 

0.99 0.8481 1.1747 0.8881 1.1236 0.921 1.0852 0.943 1.0601 

Notes: Based on 10000 Monte Carlo simulation trials. α  is the confidence level, n is the sample size, 

and LB and UB refer to the lower and upper bounds of the confidence intervals. 
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TABLE 3: RESULTS FOR STANDARD NORMAL EXPECTED SHORTFALL 
                  

(a) MOMENT RESULTS 

    α  n=250  n=500 n=1000 n=2000     

    Means     

    0.9 1.726 1.74 1.748 1.7516     

    0.95 2.0294 2.0373 2.0509 2.0565     

    0.99 2.5457 2.5727 2.6185 2.6399     

    Standard deviations     

    0.9 0.1203 0.0853 0.0603 0.0431     

    0.95 0.1532 0.1095 0.0769 0.055     

    0.99 0.2621 0.1907 0.1381 0.1002     

    Skewnesses     

    0.9 0.0915 0.0475 0.0636 -0.0266     

    0.95 0.1566 0.0758 0.0927 -0.0022     

    0.99 0.3772 0.2183 0.1836 0.1664     

    Kurtoses     

    0.9 3.0388 2.9504 3.0795 3.0334     

    0.95 3.0759 2.9818 3.0621 3.0599     

    0.99 3.3069 3.1645 3.0254 3.1241     

    Jarque-Bera prob-values     

    0.9 0.0007 0.0915 0.0092 0.4401     

    0.95 0 0.0077 0.0003 0.4721     

    0.99 0 0 0 0     

                  

(b) PRECISION MEASURES 

Standardised standard errors 

    α  n=250 n=500 n=1000 n=2000     

    0.9 0.0697 0.049 0.0345 0.0246     

    0.95 0.0755 0.0537 0.0375 0.0267     

    0.99 0.103 0.0741 0.0528 0.038     

Bounds of standardised 90% confidence intervals 

α  n=250 n=250 n=500 n=500 n=1000 n=1000 n=2000 n=2000 

  LB UB LB UB LB UB LB UB 

0.9 0.8865 1.116 0.9208 1.0821 0.9438 1.0576 0.9594 1.0403 

0.95 0.8799 1.1267 0.9123 1.0892 0.9392 1.0633 0.9564 1.0441 

0.99 0.8438 1.1762 0.8815 1.1271 0.9175 1.09 0.9394 1.0633 

Notes: Based on 10000 Monte Carlo simulation trials. α  is the confidence level, n is the sample size, 

and LB and UB refer to the lower and upper bounds of the confidence intervals. 



 25 

 

 

TABLE 4: RESULTS FOR STANDARD NORMAL SPECTRAL RISK MEASURE 
                  

(a) MOMENT RESULTS 

    ARA n=250  n=500 n=1000 n=2000     

    Means     

    5 1.0863 1.0837 1.0831 1.0825     

    25 2.0326 1.9931 1.975 1.9647     

    100 2.9583 2.7264 2.6166 2.5597     

    Standard deviations     

    5 0.0836 0.0582 0.0411 0.0292     

    25 0.149 0.104 0.0719 0.0509     

    100 0.2823 0.1885 0.1264 0.088     

    Skewnesses     

    5 0.0226 0.0308 0.0379 -0.0338     

    25 0.1378 0.0577 0.0755 -0.0027     

    100 0.3099 0.1776 0.1573 0.1205     

    Kurtoses     

    5 2.958 2.9743 3.0832 3.0537     

    25 3.0654 2.9686 3.0575 3.0422     

    100 3.2012 3.1162 3.0388 3.0973     

    Jarque-Bera prob-values     

    5 0.4526 0.3946 0.0716 0.2113     

    25 0 0.051 0.0044 0.6854     

    100 0 0 0 0     

                  

(b) PRECISION MEASURES 

Standardised standard errors 

    ARA n=250 n=500 n=1000 n=2000     

    5 0.077 0.0537 0.0379 0.027     

    25 0.0733 0.0522 0.0364 0.0259     

    100 0.0954 0.0691 0.0483 0.0344     

Bounds of standardised 90% confidence intervals 

ARA n=250 n=250 n=500 n=500 n=1000 n=1000 n=2000 n=2000 

  LB UB LB UB LB UB LB UB 

5 0.874 1.1263 0.9123 1.0901 0.9378 1.0633 0.9552 1.0443 

25 0.8824 1.1243 0.9153 1.0869 0.9406 1.0609 0.9571 1.043 

100 0.853 1.1628 0.8889 1.1182 0.9239 1.0821 0.9442 1.0577 

Notes: Based on 10000 Monte Carlo simulation trials. ARA is the coefficient of absolute risk aversion, 

n is the sample size, and LB and UB refer to the lower and upper bounds of the confidence intervals. 
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TABLE 5: RESULTS FOR NORMAL VALUE AT RISK 
                  

Standardised standard errors 

    α  n=250  n=500 n=1000 n=2000     

    N(0,1)     

    0.9 0.0857 0.0591 0.0426 0.0301     

    0.95 0.0817 0.0568 0.0403 0.0285     

    0.99 0.1003 0.071 0.0499 0.0356     

    N(5,1)     

    0.9 0.0173 0.012 0.0087 0.0061     

    0.95 0.0202 0.014 0.0099 0.0071     

    0.99 0.0318 0.0223 0.0158 0.0113     

    N(0,5)     

    0.9 0.0857 0.0591 0.0426 0.0301     

    0.95 0.0817 0.0568 0.0403 0.0285     

    0.99 0.1003 0.071 0.0499 0.0356     

                  

Bounds of standardised 90% confidence intervals 

α  n=250 n=250 n=500 n=500 n=1000 n=1000 n=2000 n=2000 

 LB UB LB UB LB UB LB UB 

    N(0,1)     

0.9 0.8605 1.1447 0.9048 1.0991 0.9306 1.0707 0.9506 1.0494 

0.95 0.8706 1.1367 0.9079 1.0964 0.9342 1.0679 0.9529 1.0466 

0.99 0.8481 1.1747 0.8881 1.1236 0.921 1.0852 0.943 1.0601 

    N(5,1)     

0.9 0.9718 1.0293 0.9807 1.0201 0.9859 1.0144 0.9899 1.0101 

0.95 0.968 1.0338 0.9773 1.0237 0.9838 1.0168 0.9884 1.0115 

0.99 0.9519 1.0553 0.9649 1.0388 0.9751 1.0269 0.9819 1.019 

    N(0,5)     

0.9 0.8605 1.1447 0.9048 1.0991 0.9306 1.0707 0.9506 1.0494 

0.95 0.8706 1.1367 0.9079 1.0964 0.9342 1.0679 0.9529 1.0466 

0.99 0.8481 1.1747 0.8881 1.1236 0.921 1.0852 0.943 1.0601 

Notes: Based on 10000 Monte Carlo simulation trials. α  is the confidence level, n is the sample size, 

and LB and UB refer to the lower and upper bounds of the confidence intervals. 
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TABLE 6: RESULTS FOR NORMAL EXPECTED SHORTFALL 
                  

Standardized standard errors 

    α  n=250  N=500 n=1000 n=2000     

    N(0,1)     

    0.9 0.0697 0.049 0.0345 0.0246     

    0.95 0.0755 0.0537 0.0375 0.0267     

    0.99 0.103 0.0741 0.0528 0.038     

    N(5,1)     

    0.9 0.0179 0.0127 0.0089 0.0064     

    0.95 0.0218 0.0156 0.0109 0.0078     

    0.99 0.0347 0.0252 0.0181 0.0131     

    N(0,5)     

    0.9 0.0697 0.049 0.0345 0.0246     

    0.95 0.0755 0.0537 0.0375 0.0267     

    0.99 0.103 0.0741 0.0528 0.038     

                  

Bounds of standardised 90% confidence intervals 

α  n=250 n=250 n=500 N=500 n=1000 n=1000 n=2000 n=2000 

  LB UB LB UB LB UB LB UB 

    N(0,1)     

0.9 0.8865 1.116 0.9208 1.0821 0.9438 1.0576 0.9594 1.0403 

0.95 0.8799 1.1267 0.9123 1.0892 0.9392 1.0633 0.9564 1.0441 

0.99 0.8438 1.1762 0.8815 1.1271 0.9175 1.09 0.9394 1.0633 

    N(5,1)     

0.9 0.9709 1.0298 0.9796 1.0212 0.9855 1.0149 0.9895 1.0105 

0.95 0.9653 1.0366 0.9746 1.0258 0.9823 1.0184 0.9873 1.0128 

0.99 0.9473 1.0594 0.9598 1.0432 0.9716 1.0309 0.9791 1.0219 

    N(0,5)     

0.9 0.8865 1.116 0.9208 1.0821 0.9438 1.0576 0.9594 1.0403 

0.95 0.8799 1.1267 0.9123 1.0892 0.9392 1.0633 0.9564 1.0441 

0.99 0.8438 1.1762 0.8815 1.1271 0.9175 1.09 0.9394 1.0633 

Notes: Based on 10000 Monte Carlo simulation trials. α  is the confidence level, n is the sample size, 

and LB and UB refer to the lower and upper bounds of the confidence intervals. 
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TABLE 7: RESULTS FOR NORMAL SPECTRAL RISK MEASURE 
                  

Standardised standard errors 

    ARA n=250  n=500 n=1000 n=2000     

    N(0,1)     

    5 0.077 0.0537 0.0379 0.027     

    25 0.0733 0.0522 0.0364 0.0259     

    100 0.0954 0.0691 0.0483 0.0344     

    N(5,1)     

    5 0.0136 0.0095 0.0067 0.0048     

    25 0.0205 0.0146 0.0102 0.0073     

    100 0.0313 0.0229 0.0161 0.0115     

    N(0,5)     

    5 0.077 0.0537 0.0379 0.027     

    25 0.0733 0.0522 0.0364 0.0259     

    100 0.0954 0.0691 0.0483 0.0344     

                  

Bounds of standardised 90% confidence intervals 

ARA n=250 n=250 n=500 n=500 n=1000 n=1000 n=2000 n=2000 

0 LB UB LB UB LB UB LB UB 

    N(0,1)     

5 0.874 1.1263 0.9123 1.0901 0.9378 1.0633 0.9552 1.0443 

25 0.8824 1.1243 0.9153 1.0869 0.9406 1.0609 0.9571 1.043 

100 0.853 1.1628 0.8889 1.1182 0.9239 1.0821 0.9442 1.0577 

    N(5,1)     

5 0.9777 1.0224 0.9844 1.016 0.9889 1.0112 0.992 1.0079 

25 0.9672 1.0347 0.9763 1.0243 0.9833 1.0171 0.988 1.0121 

100 0.9518 1.0534 0.9632 1.0391 0.9747 1.0273 0.9814 1.0192 

    N(0,5)     

5 0.874 1.1263 0.9123 1.0901 0.9378 1.0633 0.9552 1.0443 

25 0.8824 1.1243 0.9153 1.0869 0.9406 1.0609 0.9571 1.043 

100 0.853 1.1628 0.8889 1.1182 0.9239 1.0821 0.9442 1.0577 

Notes: Based on 10000 Monte Carlo simulation trials. ARA is the coefficient of absolute risk aversion, 

n is the sample size, and LB and UB refer to the lower and upper bounds of the confidence intervals. 
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TABLE 8: RATIOS OF STATISTICS UNDER 2PN DISTRIBUTION TO THOSE 

UNDER STANDARD NORMAL DISTRIBUTION  

 

VAR RISK MEASURE 

Standardised  standard errors 

    α  n=250  n=500 n=1000 n=2000     

    0.9 1.130 1.162 1.134 1.140     

    0.95 1.120 1.134 1.127 1.137     

    0.99 1.106 1.087 1.092 1.110     

Bounds of standardised 90% confidence intervals 

α  n=250 n=250 n=500 n=500 n=1000 n=1000 n=2000 n=2000 

  LB UB LB UB LB UB LB UB 

0.9 0.981 1.012 0.986 1.014 0.988 1.011 0.997 1.009 

0.95 0.980 1.015 0.988 1.008 0.992 1.009 0.995 1.007 

0.99 0.981 1.019 0.991 1.006 0.991 1.007 0.995 1.004 

                  

ES RISK MEASURE 

Standardized standard errors 

    α  n=250  n=500 n=1000 n=2000     

    0.9 1.118 1.118 1.125 1.114     

    0.95 1.106 1.104 1.117 1.112     

    0.99 1.100 1.096 1.100 1.100     

Bounds of standardized 90% confidence intervals 

α  n=250 n=250 n=500 n=500 n=1000 n=1000 n=2000 n=2000 

  LB UB LB UB LB UB LB UB 

0.9 0.986 1.012 0.988 1.008 0.992 1.006 0.995 1.004 

0.95 0.984 1.011 0.992 1.009 0.992 1.006 0.996 1.005 

0.99 0.978 1.019 0.990 1.010 0.989 1.008 0.993 1.006 

         

SRM RISK MEASURE 

Standardised standard errors 

    ARA n=250  n=500 n=1000 n=2000     

    5 1.110 1.140 1.137 1.126     

    25 1.112 1.113 1.121 1.112     

    100 1.112 1.097 1.112 1.105     

Bounds of standardised 90% confidence intervals 

ARA n=250 n=250 n=500 n=500 n=1000 n=1000 n=2000 n=2000 

  LB UB LB UB LB UB LB UB 

5 0.984 1.013 0.988 1.010 0.991 1.007 0.995 1.006 

25 0.986 1.012 0.989 1.009 0.992 1.008 0.996 1.005 

100 0.980 1.016 0.989 1.009 0.989 1.008 0.994 1.005 

Notes: Based on 10000 Monte Carlo simulation trials. The Table reports the ratios of the relevant 

statistic for a 2PN distribution (with mean 0, std 1, and 3.11 =σ 5 ; this has a skewness of 0.492 and a 

‘small’ excess kurtosis of 0.148) to the relevant statistic for a standard normal distribution. α  is the 

confidence level, n is the sample size, and LB and UB refer to the lower and upper bounds of the 

confidence intervals. 
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TABLE 9: RATIOS OF STATISTICS UNDER t DISTRIBUTION TO THOSE UNDER 

STANDARD NORMAL DISTRIBUTION 

 

VAR RISK MEASURE 

Standardised standard errors 

    α  n=250  n=500 n=1000 n=2000     

    0.9 1.168 1.203 1.195 1.169     

    0.95 1.332 1.333 1.340 1.323     

    0.99 1.756 1.672 1.695 1.666     

Bounds of standardised 90% confidence intervals 

α  n=250 n=250 n=500 n=500 n=1000 n=1000 n=2000 n=2000 

  LB UB LB UB LB UB LB UB 

0.9 0.978 1.025 0.979 1.018 0.986 1.014 0.992 1.009 

0.95 0.957 1.049 0.970 1.029 0.979 1.023 0.986 1.016 

0.99 0.897 1.131 0.928 1.078 0.947 1.059 0.964 1.040 

         

ES RISK MEASURE 

Standardised standard errors 

    α  n=250  n=500 n=1000 n=2000     

    0.9 1.515 1.533 1.522 1.537     

    0.95 1.722 1.698 1.715 1.730     

    0.99 2.199 2.157 2.186 2.232     

Bounds of standardised 90% confidence intervals 

α  n=250 n=250 n=500 n=500 n=1000 n=1000 n=2000 n=2000 

  LB UB LB UB LB UB LB UB 

0.9 0.948 1.062 0.958 1.044 0.972 1.030 0.981 1.022 

0.95 0.925 1.094 0.944 1.064 0.959 1.043 0.971 1.034 

0.99 0.852 1.201 0.886 1.146 0.910 1.101 0.932 1.081 

         

SRM RISK MEASURE 

Standardised standard errors 

    ARA n=250  n=500 n=1000 n=2000     

    5 1.344 1.348 1.335 1.333     

    25 1.850 1.831 1.832 1.853     

    100 2.273 2.285 2.302 2.369     

Bounds of standardised 90% confidence intervals 

ARA n=250 n=250 n=500 n=500 n=1000 n=1000 n=2000 n=2000 

  LB UB LB UB LB UB LB UB 

5 0.962 1.050 0.969 1.029 0.979 1.021 0.986 1.015 

25 0.915 1.105 0.935 1.073 0.954 1.051 0.968 1.037 

100 0.858 1.200 0.891 1.144 0.913 1.106 0.935 1.080 

Notes: Based on 10000 Monte Carlo simulation trials. The Table reports the ratios of the relevant 
statistic for a t distribution (with mean 0, std 1, and 5 degrees of freedom) to the relevant statistic for a 

standard normal distribution. α  is the confidence level, n is the sample size, and LB and UB refer to 

the lower and upper bounds of the confidence intervals. 

 


