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Abstract 

Spectral risk measures are attractive risk measures as they allow the user to obtain 

risk measures that reflect their subjective risk-aversion. This paper examines 

spectral risk measures based on an exponential utility function, and finds that 

these risk measures have nice intuitive properties. It also discusses how they can 

be estimated using numerical quadrature methods, and how confidence intervals 

for them can be estimated using a parametric bootstrap. Illustrative results suggest 

that estimated exponential spectral risk measures obtained using such methods are 

quite precise in the presence of normally distributed losses.   
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1. Introduction 

 

One of the most interesting and potentially most promising recent developments 

in the financial risk area has been the theory of spectral financial risk measures 

(SRMs), recently proposed by Acerbi (2002, 2004). SRMs belong to the family of 

coherent risk measures proposed by Artzner et alia (1997, 1999), and therefore 

possess the highly desirable property of subadditivity
1
. It is also well-known by 

now that the most widely used risk measure, the Value-at-risk (VaR), is not 

subadditive, and the work by Artnzer et alia and Acerbi has shown that many (if 

not most) of the inadequacies of VaR as a risk measure can be traced to its non-

subadditivity.  

 One of the nice features of SRMs is that they relate the risk measure itself 

to the user’s subjective risk-aversion – in effect, the spectral risk measure is a 

weighted average of the quantiles of a loss distribution, the weights of which 

depend on the user’s risk-aversion function. Spectral risk measures enable us to 

link the risk measure to the user’s attitude towards risk, the underlying objective 

being to ensure that if a user is more risk averse, other things being equal, then 

that user should face a higher subjective risk, which is what the SRM measures.  

This means, for example, that two different investors might have the same 

portfolios and share the same set of forecasts, but their subjective risk measures 

will still be different if one of them is more risk averse than the other.  

 In principle, SRMs can be applied to any problems involving risky 

decision making. Amongst many other possible applications, Acerbi (2004) 

suggests that they can be used to set capital requirements or obtain optimal risk-

expected return tradeoffs in portfolio analysis, and Cotter and Dowd (2006) 

suggest that SRMs could be used by futures clearinghouses to set margin 

requirements that reflect their corporate risk appetites. 

  This paper investigates SRMs further. In particular, it focuses on SRMs 

based on an underlying exponential utility function. Our objective is two-fold. 

                                            
1 More formally, if (.)ρ  is a measure of risk, and A and B are any two positions, subadditivity 

means that )()()( BABA ρρρ +≤+ . Subadditivity is a crucial condition because it ensures that 

our risks do not increase overall when we put them together. As Acerbi and others have pointed 

out, any risk measure that does not satisfy subadditivity has no real claim to be regarded as a 

‘respectable’ risk measure at all (see, e.g., Acerbi (2004, p. 150)).  



 
 
 
 

 3 

First, we seek to establish some of the properties of SRMs to see how intuitive 

and ‘well-behaved’ they might be. Our second objective is computational: we 

discuss how these SRMs might be estimated and also discuss how we might 

estimate confidence intervals for them.  

 The article is organised as follows. Section 2 sets out the essence of 

Acerbi’s theory of spectral risk measures. Section 3 discusses SRMs based on 

exponential utility functions. Section 4 discusses the estimation of SRMs and 

section 5 discusses the estimation of confidence intervals for them. Section 6 

concludes. 

 

2. Spectral Risk Measures 

 

Following Acerbi (2004), consider a risk measure φM  defined by: 

 

(1)                                                 ∫=
1

0

)( dpqpM pφφ  

 

where pq  is the p loss quantile and )( pφ  is a user-defined weighting aversion 

function with weights defined over p, where p is a continuous range of cumulative 

probabilities ]1,0[∈p . We can think of φM  as the class of quantile-based risk 

measures, where each individual risk measure is defined by its own particular 

weighting function.  

 Two well-known members of this class are the VaR and the Expected 

Shortfall (ES). The VaR at the α  confidence level is: 

 

(2)                                                      αα qVaR =       

 

The VaR places all its weight on a single quantile that corresponds to a chosen 

confidence level, and places no weight on any others, i.e., with the VaR risk 

measure, )( pφ  takes the degenerate form of a Dirac delta function that gives the 

outcome α=p  an infinite weight and gives every other outcome a zero weight. 
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 For its part, the ES at the confidence level α  is the average of the worst 

α−1  of losses and (in the case of a continuous loss distribution) is: 

 

(3)                                            ∫−
=

1

1

1

α

α
α

dpqES p                                                      

 

With the ES, )( pφ  gives tail quantiles a fixed weight of 
α−1

1
 and gives non-tail 

quantiles weight of zero.  

 A drawback with both of these risk measures is that they inconsistent with 

risk aversion in the traditional sense. This can be illustrated in the context of the 

theory of lower partial moments (see Bawa (1975), Fishburn (1977) and 

Grootveld and Hallerbach (2004)). Given a set of returns r  and a target return 

*r , the lower partial moment of order 0≥k  around *r  is equal to 

}]*,0{[max( k
rrE − . The parameter k  reflects the user’s degree of risk aversion, 

and the user is risk-averse if 1>k , risk-neutral if 1=k  and risk-loving if 

10 << k . It can then be shown that the VaR is a preferred risk measure only if 

0=k , i.e., the VaR is our preferred risk measure only if we are very risk-loving! 

The ES would be our preferred risk measure if 1=k , and this tells us that the ES 

is our preferred risk measure only if the user is risk-neutral between better and 

worse tail outcomes.   

 A user who is risk averse might prefer to work with a risk measure that 

take account of his/her risk aversion, and this takes us to the class of spectral risk 

measures (SRMs). In loose terms, an SRM is a quantile-based risk measure that 

takes the form of (1) where )( pφ  reflects the user’s degree of risk aversion. More 

precisely, we can consider SRMs as the subset of φM  that satisfy the following 

properties of positivity, normalisation and increasingness due originally to 

Acerbi:
2
 

                                            
2
 See Acerbi (2002, 2004). However, it is worth pointing out that he deals with a distribution in 

which profit outcomes have a positive sign, whereas we deal with a distribution in which loss 

outcomes have a positive sign. His first condition is therefore a negativity condition, whereas ours 

is a positivity condition, but this difference is only superficial and there is no substantial difference 

between his conditions and ours.   
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1. Positivity: 0)( ≥pφ . 

2. Normalisation: ∫ =
1

0

1)( dppφ . 

3. Increasingness: 0)( ≥′ pφ . 

The first coherent condition requires that the weights are weakly positive and the 

second requires that the probability-weighted weights should sum to 1, but the 

key condition is the third one. This condition is a direct reflection of risk-

aversion, and requires that the weights attached to higher losses should be no less 

than the weights attached to lower losses. Typically, we would also expect the 

weight )( pφ  to rise with p.
3
  In a ‘well-defined’ case, we would expect the 

weights to rise smoothly, and the more risk-averse the user, the more rapidly we 

would expect the weights to rise.  

 A risk measure that satisfies these properties is attractive not only because 

it takes account of user risk-aversion, but also because such a risk measure is 

known to be coherent.
4
  

 However, there still remains the question of how to specify )( pφ , and 

perhaps the most natural way to obtain )( pφ  is from the user’s utility function
5
.  

 

3. Exponential Spectral Risk Measures 

 

This requires us to specify the utility function, and a common choice is the 

exponential utility function. This utility function is defined conditional on a single 

parameter, the coefficient of absolute risk aversion. The exponential utility 

function is defined as follows over outcomes x:  

 

(4)                                                    ax
exU

−−=)(  

 

                                            
3
 The conditions set out allow for the degenerate limiting case where the weights are flat for all p 

values, and such a situation implies risk-neutrality and is therefore inconsistent with risk-aversion. 

However, we shall rule out this limiting case by imposing the additional (and in the circumstances 

very reasonable) condition that )( pφ  must rise over at least point as p increases from 0 to 1.  

4
 The coherence of SRMs follows from Acerbi (2004, Proposition 3.4). 

5
 See also Bersimas et alia (2004). 
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where 0>a  is the Arrow-Pratt coefficient of absolute risk aversion (ARA). The 

coefficients of absolute and relative risk aversion are: 

 

(5a)                                             a
xU

xU
xRA =

′

′′
−=

)(

)(
)(  

(5b)                                           xa
xU

xUx
xRR =

′

′′
−=

)(

)(
)(  

 

We now set 

 

(6)                                                  )1()( pa
ep

−−= λφ   

 

where λ  is an unknown positive constant. This clearly satisfies properties 1 and 

3, and we can easily show (by integrating )( pφ  from 0 to 1, setting the integral to 

1 and solving for λ ) that it satisfies property 2 if we set  

 

 (7)                                                     
a

e

a
−−

=
1

λ  

 

Hence, substituting (7) into (6) gives us the exponential weighting function (or 

risk-aversion function) corresponding to (4):
6
 

 

(8)                                                 
a

pa

e

ae
p

−

−−

−
=

1
)(

)1(

φ  

 

This risk-aversion function is illustrated in Figure 1 for two alternative values of 

the ARA coefficient, a. Observe that this weighting function has a nice shape: for 

the higher p values associated with higher losses, we get bigger weights for 

greater degrees of risk-aversion. In addition, as p rises, the rate of increase of 

)( pφ  rises with the degree of risk-aversion.  

                                            
6 

Strictly speaking, Acerbi’s proposition 3.19 in Acerbi (2004, p. 182) defines his weighting 

function in terms of a parameter γ >0, but his weighting function and (7) are equivalent subject to 

the proviso that γ =1/a. 
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Insert Figure 1 here 

 

 The SRM based on this risk-aversion function, the exponential SRM, is 

then found by substituting (8) into (1), viz.:
7
  

 

(9)                         ∫=
1

0

)( dpqpM pφφ = ∫
−−

−−
=

1

0

)1(

1
dpqe

e

a
M p

pa

aφ  

 

 We also find that the risk measure itself rises with the degree of risk-

aversion, and some illustrative results are given in Table 1. For example, if losses 

are distributed as standard normal and we set 5=a , then the spectral risk measure 

is 1.0816. But if we increase a to 25, the measure rises to 1.9549: the greater the 

risk-aversion, the higher the exponential spectral risk measure.   

 

Insert Table 1 here 

 

 The relationship of the exponential SRM and the coefficient of absolute 

risk aversion is illustrated further in Figure 2. We can see that the risk measure 

rises smoothly as the coefficient of risk aversion increases, as we would expect.  

 

Insert Figure 2 here 

 

These results suggest that ESRMs are ‘well-behaved’ and have nice intuitive 

properties.  

 

4. Estimating Spectral Risk Measures 

 

                                            
7
 Estimates of (9) were obtained using Simpson’s rule numerical quadrature with p divided into 

N=10,000,001 ‘slices’. The calculations were carried out using the CompEcon functions in 
MATLAB given in Miranda and Fackler (2002). As the results in section 4 below suggest, this 

value of N suffices to us effectively exact estimates of SRMs. We use n=10,000,001 rather than 

the more obvious n=10,000,000 because the Simpson’s rule algorithm requires n to be odd. 
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The equation for the SRM, (9), indicates that solving for the SRM involves 

integration. Special cases aside, this integration would need to be carried out 

numerically rather than analytically. This means that the estimation of SRMs 

requires a suitable numerical integration or numerical quadrature method. Such 

methods estimate the integral from a numerical estimate of its discretised 

equivalent in which p is broken into a large number of N ‘slices’.
8
 This, in turn, 

raises the question of how different quadrature methods compare. Furthermore, 

since quadrature methods depend on a specified value of N, it also raises the issue 

of how estimates might depend on the value of N.  

 To investigate these issues further, Figure 3 provides some plots showing 

how estimates of standard normal SRMs vary with different quadrature methods 

and different values of N. These plots are based on an illustrative ARA coefficient 

equal to 5, but we get similar plots for other values of this coefficient. The 

methods examined are those based on the trapezoidal rule, Simpson’s rule, and 

Niederreiter and Weyl quasi-Monte Carlo. As we might expect, all four 

quadrature methods give estimates that converge on their true values as N gets 

larger. However, the trapezoidal and Simpson’s rule methods produce estimates 

that converge smoothly as N gets larger, whereas the two quasi-Monte Carlo 

methods produce estimates that converge more erratically as N gets larger. The 

plots also suggest that the first two methods are usually more accurate for any 

given value of N, and that the method based on Simpon’s rule is marginally better 

than that based on the trapezoidal rule.  

 

Insert Figure 3 here 

 

 In addition, these plots show that all methods produce estimates of SRMs 

that have a small downward bias. If we wish to get accurate estimates of SRMs, it 

is therefore important to choose N value large enough to make this bias negligible. 

To investigate further, Table 2 reports results for the accuracy and calculation 

times of the same SRM estimated using Simpson’s rule and different values of N. 

This shows that, for N=1,001, we get an estimate with an error of -1.55% and this 

                                            
8
 For more on these methods, see, e.g., Borse (1997, chapter 7), Miranda and Fackler (2002, 

chapter 5) or Kreyszig (1999, chapter 17). 
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takes 0.0027 seconds to calculate using the latest version (version 2007a) of 

MATLAB using a Pentium 4 desktop computer. For N=10,001, the error is -

0.18% and this estimate takes 0.0096 seconds to calculate. The accuracy and 

calculation times increase as N gets larger, and when N=10,000,001, we get an 

error of -0.00% and a calculation time of a little over 8 seconds. Bearing in mind 

that real-world risk measurement is subject to many different sources of error that 

are beyond the control of the risk manager, it is pointless to go for spuriously 

accurate estimates that ignore these other sources of error. We would therefore 

suggest that a value of N=10,001 is for practical purposes accurate enough for the 

needs of risk managers in the real world.
9
  

 

Insert Table 2 here 

 

 

5. Estimating Confidence Intervals for Spectral Risk Measures 

 

Given that our estimates are prone to many sources of error, it is good practice to 

estimate some precision metrics to go with our estimated risk measures, and 

perhaps the best such metrics are estimates of their confidence intervals.    

 We can easily obtain such estimates using a parametric bootstrap, and this 

can be implemented using the following procedure: 

• Given N, for each of b bootstrap trials, we simulate a set of N loss values 

from our assumed distribution, in this case a standard normal. We order 

these simulated losses from lowest to highest to obtain a set of simulated 

quantiles, pq~ . We then apply our chosen quadrature method to (9) with pq  

replaced by pq~  to obtain a bootstrap estimate of the SRM. 

• We repeat this step b times and obtain an estimate of the confidence interval 

from the distribution of simulated SRM estimates.  

                                            
9
 However, beware the small print: these results are obtained assuming that losses are normal and 

were also obtained using a good numerical integration routine. In practice, risk managers would be 

well advised to check the accuracy of their numerical integration routines before using them and 
also check the extent to which similar findings hold or do not hold for the distributions they are 

dealing with.  
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 Some illustrative results are shown in Table 3. This shows estimates of the 

90% confidence intervals for values of the ARA coefficient equal to 5 and 100. 

The Table also shows estimates of the standardised confidence intervals, which 

are equal to the 90% confidence intervals with the bounds divided by the mean of 

the bootstrap SRM estimates. All results are based on N=10,001 and b=1000. We 

can see that for ARA=5, the 90% confidence is [1.0591, 1.1012] and its 

equivalent for ARA=100 is [2.4075, 2.5380]. For ARA=5, the standardised 

interval is [0.9805, 1.0195] and for ARA=100 the standardised interval is [0.9739, 

1.0267]. It is striking how narrow these intervals are: for ARA=5, the width of the 

interval is only 3% of the estimated mean SRM, and for ARA=100, the width is 

only a little over 5% of the estimated mean SRM. These narrow confidence 

intervals indicate that the SRM estimates are very precise.  

 

Insert Table 3 here 

 

6. Conclusions 

 

This paper has examined spectral risk measures based on an exponential utility 

function. We find that the exponential utility function leads to risk-aversion 

functions and spectral risk measures with intuitive and nicely behaved properties. 

These exponential SRMs are easy to estimate using numerical quadrature methods 

and accurate estimates can be obtained very quickly in real time. It is also easy to 

estimate confidence intervals for these SRMs using a parametric bootstrap. 

Illustrative results suggest that these confidence intervals are surprisingly narrow, 

and this indicates that SRM estimates are quite precise. Of course, the results 

presented here are based on an assumed normal distribution, and further work is 

needed to establish results for other distributions.
10

  

 

                                            
10

 However, a start has already been made: for example, Acerbi (2004,  pp. 202-205) provides 
some results for lognormal and power-law distributions, and Cotter and Dowd (2006) provide 

results for Generalised Pareto distributions.  
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FIGURES 

 

 

Figure 1: Exponential Risk Aversion Functions 

 

Notes: Weights are based on the exponential risk-aversion function (8). 
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Figure 2: Plot of Exponential Spectral Risk Measure Against the Coefficient 

of Absolute Risk Aversion: Standard Normal Loss Distribution 
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Notes: As per Table 1.  
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Figure 3: Estimates of Standard Normal Spectral Risk Measure for Various 

Numerical Quadrature Methods and Values of N: Coefficient of Absolute 

Risk Aversion = 5 
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Notes: As per Table 1. Each chart gives plots of the estimated SRM predicated on 

ARA=5 for each of four numerical quadrature methods: the trapezoidal rule, 

Simpson’s rule, the Niederreiter quasi Monte-Carlo and Weyl quasi-Monte Carlo. 
Estimates are of (9) obtained for values of N ranging from 100 to 20000.  

 

 



 
 
 
 

 15 

 

Table 1: Values of Exponential Spectral Risk Measure with Standard 

Normal Losses 

Coefficient of Absolute Risk 

Aversion 

Exponential Spectral Risk Measure 

1 0.2781 

5 1.0816 

25 1.9549 

100 2.5055 

Notes: Estimates are of (9) obtained using Simpson’s rule numerical 

quadrature with p divided into N=10,000,001 ‘slices’. The calculations were 

carried out using the Miranda-Fackler (2002) CompEcon functions in the 
2007a version of MATLAB on a Pentium 4 desktop computer.  

 

 

 

Table 2: Percentage Errors and Calculation Times for Estimates of Standard 

Normal Exponential Spectral Risk Measure Obtained Using Simpson’s Rule: 

Coefficient of Absolute Risk Aversion = 5 

N Percentage Error Calculation Time (secs) 

1,001 -1.55% 0.0027 

10,001 -0.18% 0.0096 

100,001 -0.03% 0.0818 

1,000,001 -0.01% 0.8689 

10,000,001 0.00% 8.3775 

Note: As per the Notes to Table 1 but with the specified value of N.  
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Table 3: Illustrative Estimates of 90% Confidence Intervals for Spectral Risk 

Measures  

ARA = 5 ARA = 100 

90% Confidence Interval 

[1.0591, 1.1012] [2.4075, 2.5380] 

Standardized 90% Confidence Interval 

[0.9805, 1.0195] [0.9739, 1.0267] 

Note: Estimates are of (9) obtained using Simpson’s rule numerical quadrature with 

N=10,001 and 1000 resamples from a parametric bootstrap. The SRM estimates were 
obtained using the Miranda-Fackler (2002) CompEcon functions in MATLAB on a 

Pentium 4 desktop computer. The underlying loss distribution is assumed to be 

standard normal. Each confidence interval took just over 14 seconds to calculate. 

The standardised 90% confidence intervals are equal to the associated 90% 

confidence interval with each bound divided by the mean of the bootstrap SRM 

estimates. 

 

 

 


