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Abstract

I show a simple back-of-the-envelope method for calculating marginal effects in binary

choice and count data models. The approach suggested here focuses attention on

marginal effects at different points in the distribution of the dependent variable rather

than representative points in the joint distribution of the explanatory variables. For binary

models, if the mean of the dependent variable is between 0.4 and 0.6 then dividing the

logit coefficient by 4 or multiplying the probit coefficient by 0.4 should be moderately

accurate.

Keywords: marginal effects, binary choice, count data



2

1. Introduction

Limited dependent variable models are widely used in the analysis of survey data. Unlike

linear regression model, the magnitudes of the parameters are not easily interpreted. For this

reason it is common to present estimates of marginal effects: the effect of a small change in the

covariates on the probability of a particular outcome. Statistical packages are increasingly

including one or more methods for doing this. This note presents a very simple way of doing

this for a number of leading limited dependent variable models, probit, logit, Poisson and

negative binomial regression, which can be calculated on the back of an envelope.

2. Binary choice models

Say one is estimating a binary choice model given by:

E(Y/X)=F(bX) (1)

Y is a binary variable, X is a design matrix including a constant. The model is probit or logit

depending on the choice of F. The marginal effect for x1 then is:

1
1

)(
)/(

bbXf
x

XYE



 (2)

Where f(.) is the density function corresponding to the distribution function F(.). Hence the

marginal effect is the product of the relevant coefficient and a scale factor which will be

common to all variables but which will vary from one observation to the next. Standard

solutions are to evaluate the scale factor at (i) the mean of the X’s, the marginal effect at the

mean (MEM-X) or at (ii) each observation and take the average, the average marginal effect

(AME). The former is what Stata’s mfx command produces while the latter is what the margeff

procedure due to Bartus (2005) does. AME takes longer to calculate but is arguably more

intuitively appealing.
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Anderson & Newell (2003) present an alternative solution to this problem. They note that if all

the X variables are normalized to have a mean of 0, the scale factor depends only on the

estimated constant. By simply plugging the constant into the appropriate density function, an

estimated scale factor is generated1. Whether this method is of much practical use is unclear:

since the constant can be any real number a large table of possible values must be consulted.

Moreover in practice many researchers will not wish to normalize their X variables. For

example if one wishes to estimate models on different sub-populations one would need to

normalize the data for each model. Alternatively if the estimation sample changed because one

added a variable with a different pattern of missing values from the existing variables then,

again, re-normalization would be required.

A simpler solution which may be more convenient is to evaluate at the mean of the dependent

variable (“MEM-Y”).
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
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That is bX is the scalar value of the single index that would generate the sample mean.

Inverting (3) and substituting into (2) implies
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Hence to calculate marginal effects one multiplies the coefficient by a scalar which is a

function only of the mean of the dependent variable. The function is symmetric around 0.5.

The values of the scale factor for various values of the mean are given in Table 2 below. So if

1 It is also possible to generate estimated asymptotic variances for the marginal effects with this approach, given

an estimate of the variance/covariance matrix of the coefficients but this is probably not its main attraction.
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the mean of the dependent variable is between 0.4 and 0.6 then dividing the logit coefficient by

4 or multiplying the probit coefficient by 0.4 should be moderately accurate.

The approach suggested does not generate variances/t ratios for the marginal effects. In

practise the t ratios for marginal effects and for the underlying coefficients seldom seem to

differ by much. Where they do differ by much, such that one was significantly different from

zero and the other was not, interpretation would be somewhat problematic.

3. Applications:

To illustrate the method suggested here I use the “union” dataset provided with Stata and

model union membership as function of age, grade, not_smsa, south and southXt 2. The mean

of the dependent variable is .222 so I use the nearest value in Table 2, 0.3 for probit and 0.174

for logit. Table 1 shows the different marginal effects for one variable (south). The first row

has the regular probit and logit coefficients. The last row, MEM-Y, gives the estimates with the

method suggested in equation (4). For both logit and probit the difference with conventional

marginal effects is less than 1% i.e. less than one percentage point, good enough for most

purposes. Proportionally the gap is slightly smaller for probit.

In many empirical models of individual behaviour one includes both age and its square and one

may be interested in the marginal effect of one year. This will depend on both coefficients, say

bA and bAA, respectively. One could use the following approximation and evaluate at whatever

values of age that one is interested in.
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2 Within Stata type “webuse union” followed by “probit union age grade not_smsa south southXt” for the probit
model.
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4. Extension to count data models

It is straightforward to extend this approach to count data models such as Poisson and Negative

binomial since the conditional mean function is of the form:

XeXYE )/( (6)

In this case the marginal effect is
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Approximating this at the mean of Y yields
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Alternatively, one could evaluate at any other point of the distribution of Y that one is

interested in. Note that if one is interested in evaluating the elasticity then one can evaluate at

either the mean of the relevant X variable or at some other value that is of interest:
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5. Concluding remarks

This note provides a simple, back-of-the-envelope, method to estimate marginal effects in

several popular limited dependent variable models. The approximation suggested here will not

coincide with either the conventional “marginal effects at the mean” or the “average marginal

effects” because of the non-linear functional form. They are different parameters but will

probably be quite close in practice. The approach suggested here focuses attention on marginal

effects at different points in the distribution of the dependent variable rather than representative

points in the joint distribution of the explanatory variables.
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Table 1: Marginal effects with different methods: an example with P=.222

Probit Logit

Coefficient -.4036 -.7144

MEM-X -.1145 -.1162

AME -.1143 -.1162

MEM-Y -.1208 -.1243

Table 2: Scale factors as a function of the mean of the dependent variable

P 1-P logit probit
0.010 0.990 0.010 0.027
0.025 0.975 0.024 0.058
0.050 0.950 0.048 0.103
0.075 0.925 0.069 0.142
0.100 0.900 0.090 0.175
0.125 0.875 0.109 0.206
0.150 0.850 0.128 0.233
0.175 0.825 0.144 0.258
0.200 0.800 0.160 0.280
0.225 0.775 0.174 0.300
0.250 0.750 0.188 0.318
0.275 0.725 0.199 0.334
0.300 0.700 0.210 0.348
0.325 0.675 0.219 0.360
0.350 0.650 0.228 0.370
0.375 0.625 0.234 0.379
0.400 0.600 0.240 0.386
0.425 0.575 0.244 0.392
0.450 0.550 0.248 0.396
0.475 0.525 0.249 0.398
0.500 0.500 0.250 0.399
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