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Abstract

Using principles of finance, we control for outside transportation rates and commodity market

shocks, previously omitted variables, into Porter’s (1983) analysis of industry demand, stability and

pricing in the Joint Executive Committee Railroad Cartel. Our estimates of demand primitives are

greatly enhanced by having cross-price effects. Finite periods of Cartel instability, as defined in

the Aldrich Report (1893), are found to be triggered by unexpected commodity market shocks, and

not by demand cycles, controlling for other factors. This is consistent with previous literature. We

model pricing over marginal costs as a nonparametric function of a set of factors, including expec-

tations of deterministic demand cycles and the expected probability of cartel stability. We estimate

this nonparametric function, and linear marginal costs semiparametrically, as part of an equilibrium

price path. Our estimated mark-up cycles during periods of stability, indicate that the JEC set rates

over expected demand cycles as modeled in Haltiwanger and Harrington (1991).

Keywords: Demand shocks in New York, Deterministic demand cycles, Elevators in-

ventory management, JEC Railroad Cartel, Outside transportation rates, Spot and

future weekly commodity prices in Chicago and New York, Structural modeling.
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1 Introduction

The Joint Executive Committee Railroad Cartel (JEC) was in operation before the formation of the

Interstate Commerce Commission (1887) and the passing of the Sherman Act (1890). The Committee

operated explicitly as a legal Railroad Cartel during the period 1880 to 1886. A key issue for this paper,

and most of the literature that worked on the JEC, is understanding how the Cartel sustained itself over

deterministic cycles and in the presence of unexpected demand shocks, amongst other factors. To do this

we incorporate previously omitted controls for expected outside transportation options and commodity

market shocks into Porter’s (1983) “henceforth Porter” analysis of market demand, pricing and stability

in the JEC Cartel.

Raw data from Coleman (2009) allow us to model the average weekly cost of moving grain (corn)

between Chicago and New York. Coleman makes use of a theory based on the law of one price that allows

for storage management and slow transportation over the Great Lakes (Lakes) to document how taking

differences in the weekly spot price of corn in Chicago and the one month future in New York controls

for the true expected shadow price of moving grain between the two cities. Lakes and Canals were the

dominant mode of grain transportation between Chicago and New York, and Elevators played a key role

in the demand for transportation. Elevators in New York did not accept high Winter transport costs, but

rather used inventories to benefit from the low transportation costs in the open season. Transportation

over the Lakes and Canals took three weeks and any shortfalls in New York (mainly for export), could

be made up for, over Rail, in a few days. Even though the Lakes are closed for the Winter season,

Coleman provides convincing empirical evidence that differences in the weekly price for corn in Chicago

and New York stock markets mainly reflected the transportation costs of corn over the Lakes and Canals

plus storage costs. Commodity prices in Chicago and New York stock markets, spots and futures, are

independent of transportation prices and volumes set by the JEC cartel. Inventory management ensured

the JEC potentially faced competition from the Lakes and Canals all year round. In this way inventory

and pricing on the Lakes and Canals route imposed exogenous but, as we will document, predictable

changes in demand on the JEC Railroad Cartel.

With simple extensions of the model in Porter, and with data on the expected rate of outside

transportation options, we estimate improved demand primitives for the JEC, which are important to

recover mark-ups from pricing. In addition, in terms of optimal price setting we illustrate how the

JEC rate movements over marginal cost were driven by deterministic cycles, among other factors, to

maintain Cartel stability. Hence, we also allow the mark-up to be driven by the expected rate of outside

transportation options, amongst other factors.

This new data allows us to control for previously omitted data, but also to model and estimate

demand, pricing and Cartel stability in an innovative way. Our modeling leads to rich estimates of

weekly mark-up dynamics that were not previously estimated and documented for this Cartel. The

price-cost margin from a generalized first order condition for pricing in an imperfectly competitive

homogenous goods industry can be expressed as the following:

Pt −MCt
Pt

= −θt
η
. (1)

Weekly price-cost margins can be expressed as the ratio of a conduct parameter, θt, and the total

industry elasticity of demand η. We depart from the previous literature on the JEC in two important

ways. First, we allow the JEC overall elasticity of demand, η, to be made up of two demand primitives,

the own- and cross-price elasticity of demand. Demand will be found to depend on the expected price of
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outside transportation options, among other things. Secondly, we model conduct, θt, as a nonparametric

function of a set of observable variables.1 Porter provides us with evidence that the JEC did experience

finite periods of revisions to low mark-ups to sustain the Cartel, as modeled in Green and Porter (1984).

We confirm that his estimates of such finite revision phases are very similar to the periods of Cartel

instability, as defined in the Aldrich Report (1893).

We also model the causes of Cartel instability. Following Ellison (1994) we face-off deterministic

cycles against unanticipated demand shocks as triggers of finite periods of instability, amongst other fac-

tors. Consistent with Ellison, we find that errors in such expectations, driven by unexpected commodity

price shocks, are the key reason for the JEC spinning into finite periods of instability.2 One important

component of our modeling of θt, will be the expected probability of the Cartel in the next period being

stable or not, amongst other controls. We work with precisely the same functional form for cost employed

by Porter, but similar to Appelbaum (1982) we model Porter’s hidden regime (the conduct parameter)

with a set of observables entering a nonparametric function. We wish to show how the inclusion of

previously omitted data into this nonparametric function leads to richer mark-up dynamics, particularly

when the Cartel is stable.3 We include the following observables into a nonparametric modeling of what

was Porter’s unobservable (the mark-up): expected price of outside transportation options; estimated

expected probability of Cartel stability; and movements in the internal incentive compatibility constraint

(ICC) generated by anticipated demand cycles and not captured by the outside transportation options

- as motivated by Haltiwanger and Harrington (1991). We capture the latter with a strictly exogenous

count on the number of weeks that the Lakes are open and on the number of weeks to Lakes opening.

We use these variables to proxy for expectations of increasing (decreasing) demand as we move along

the weeks in the Lakes open (closed) season. Our modeling of pricing is conditioned on the probability

of being in a stable regime in the next period and is estimated simultaneously with demand.

Overall we document a much richer and more general model of the factors driving JEC pricing above

marginal cost (mark-up). Taking this mark-up with demand primitives we test for important properties

in the dynamics of price-cost margins for this Cartel and find support for cyclical pricing as uncovered in

Haltiwanger and Harrington (1991). To test the Haltiwanger and Harrington (1991) theory during the

collusive periods, we regress price-cost margins during upswings and price-cost margins during down-

turns on a quartic function of the demand business cycle. The Haltiwanger and Harrington (1991) theory

seems to be validated: for the same level of demand, the price (mark-up) is lower when the JEC is in a

period of prolonged decline in demand, compared with that coming into a period of prolonged increases

1Theory based on repeated games suggests that the Bresnahan’s (1989) θ is not static, as the intensity of price com-
petition (market share rivalry) can vary over time. The way one models demand impacts the trade-off between one shot
gains and discounted losses in incentive compatibility constraints in repeated games. This has been shown to generate very
different time paths of the conduct and equilibrium price-cost margin (see for example Green and Porter (1984), Rotemberg
and Saloner (1986), Haltiwanger and Harrington (1991) and Fabra (2006)). Genesove and Mullin (1998) provides us with
a nice overview of the empirical issues surrounding the estimation of the generalized first order condition for pricing in
homogenous good industries.

2Several theoretical papers have discussed this problem within the JEC, both from traditional, and game theoretic
frameworks. The focus of this work has been on the apparent causes of “price wars” identified by Porter (1983), Ulen
(1983), Porter (1985), Ellison (1994), Rotemberg and Saloner (1986), and Vasconcelos (2004). The core aim of the Ellison
paper is to try and understand plausible trigger strategies that could send the Cartel into finite periods of punishment. His
main finding is that unexpected demand shocks in the AR(1) residual of demand triggered the price war. This is tested
against a Rotemberg and Saloner (1986) effect where the ICC comes under pressure when anticipated demand is high but
low in the next period. Using data on commodity markets in New York, we intend to show that unanticipated commodity
market shocks in New York were the trigger and not the cyclical nature of pricing as controlled by us. This is compatible
with the findings of Ellison. As in Ellison, unusual movements in the market share of companies are not found to be the
culprit. It seems that a common external unanticipated commodity shock was the trigger, consistent with the mechanisms
in the trigger strategy discussed in the Green and Porter (1984) paper.

3We provide a direct comparison of our results with Porter, and for this reason make no attempt to separate out this
function in pricing from costs using the techniques suggested in Berry, Levinsohn and Pakes (1995).
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in demand. We see the important role of expected demand on mark-up cycles, reiterating the findings

in Borenstein and Shepard (1996).

To sum up, the Porter study is regarded by most as a classic IO paper and the best analysis of a func-

tioning cartel with imperfect observation. Incorporating previously omitted variables, using principles of

finance, into an analysis of demand, pricing setting and stability in the JEC Railroad Cartel, does give

us important new insights into rate setting in the JEC. While the results are broadly similar to Ellison

(1994) in terms of our modeling of stability and demand, we find that the anticipated cyclical nature of

demand is important for mark-ups (pricing) during periods of Cartel stability. Incorporating previously

omitted variables in our modeling of mark-ups dynamics allows us to use an innovative semiparametric

approach to estimating a generalized first order condition for pricing in an imperfectly competitive ho-

mogenous good industry. The resulting mark-up dynamics are very rich. In terms of lessons for today,

the paper suggests that illegal price co-ordination can be detected in markets where firms must price

over deterministic demand cycles.

In section two, we describe the data and literature. In section three, we replicate Porter and intro-

duce our extension. In section four we provide results. Finally, we draw some conclusions.

2 The Data and Literature

The JEC managed East-bound freight shipments of grain, flour and provisions from Chicago to the

Atlantic Coast. Grain was by far the most important commodity for the Cartel. The JEC set official

rates and market share allotments, and managed clearing arrangements for those above and below their

allocated tonnage for traffic out of Chicago. All members of the Cartel had full information on official

rates, tonnage of traffic by each company and any deviation between allocated and actual tonnage.

These statistics were published in weekly reports in the Railway Review and the Chicago Tribune. Porter

employs a time series Cartel level data set, previously collated by Ulen (1979), to provide evidence of

revisions to a low mark-up by the Cartel for finite periods. This finding is consistent with how to keep a

cartel sustainable in the optimal equilibrium model of Green and Porter (1984). The top part of Table

1 provides summary statistics for the variables that he utilized. The period of reference spans from

January 1, 1880 to April 18, 1886, for a total of 328 weeks.

Ellison (1994) provides us with another important empirical paper on the JEC. Building on Porter

he imposes a Markov structure on the transitions to finite periods of low pricing to allow him model

the causes of “price wars”. He estimates the parameters of the demand and pricing model of Porter by

maximizing the joint likelihood of a system of demand, pricing and paths of transitions into and out of

the Cartel instability. In addition, he imposes an AR(1) structure in the residuals of the Porter demand

function and finds evidence of hidden regimes (omitted variables) in demand. We address this issue by

bringing some key omitted variables into the demand function, most importantly the expected outside

transportation rate. The core aim of the Ellison paper was to try and understand plausible trigger

strategies that could send the Cartel into finite periods of punishment. He tested, but found little

evidence of, four triggers constructed from the firm (railroad) level data, each designated to proxy for

signals of cheating by firms inside the Cartel. Computing these variables requires having firm-level data

on assigned quotas and actual market shares. We replicate his variables for use in our empirical model

of Cartel stability. We document our reproduction in Table 1. The first of Ellison’s variables, BIG1, is

aimed at capturing a particularly high market share for one of the firms in the cartel and is computed as:
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max
i

(sit−sit)
σi

. The market share of firm i is defined as sit ≡
(

logQit − 1
Nt

∑
j logQjt

)
, with sit denoting

the average market share over the previous twelve weeks.4 The heteroscedastic parameter σi indicates

each firm’s standard deviation. Nt denotes the number of firms in the Cartel in period t. BIG2 is a

variant of BIG1, with the only difference being that sit ≡ Qit

Qt
. BIGQ is also a variant of BIG1, which

uses sit as defined in BIG1, but computes sit over the allotted market share ait. The last of the Ellison’s

variables is SMALL1. Its role is to detect an unusually small market share for one of the firms in the

Cartel. It is calculated as the absolute value of the min
i

(sit−sit)
σi

, conditional on having min
i

(sit−sit)
σi

< 0

(zero otherwise), where sit and sit are those earlier defined in BIG1.5 As in Ellison, unusual movements

in the market share of companies are not found to be the trigger. It seems that a common external

unanticipated commodity shock is the culprit.

A final focus of Ellison was on the cyclical nature of pricing in the JEC. He finds little evidence that

the cyclical or seasonal nature of demand had any impact on the general run of pricing or on a transition

to “price wars”.

We construct variables from grain commodity markets that will control for external pressures to the

JEC coming from outside transportation options and commodity market shocks in New York. Coleman

(2009) had some key insights into the functioning of the late-nineteenth century transportation of grain

between Chicago and New York. To facilitate the export of grain from the Great Plains to Europe after

harvesting, there was a major rush to get grain over the Great Lakes and Canals to New York for storage

in Elevators. The slowest and least expensive method was to travel to Buffalo by ship via the Great

Lakes, and then on to New York along the Erie Canal (purposely enlarged during the period 1836 and

1862). This took approximately three weeks. A faster and more expensive method, taking ten days, was

to ship it to Buffalo and then use rail on New York. This was useful particularly as the Canals would

freeze up before the ports of the Lakes. Transportation over the Great Lakes was not available between

November and late April however, as both the Canals and the ports of the Great Lakes were frozen. The

fastest and most expensive method, available all year round, was to send grain over three days by rail to

New York. The rail route could be used to top-up any shortfalls all year round. Generally, the market

tried to stock inventories using the cheap and slow (closed in winter) mode of transportation. During the

period 1878 and 1890, Coleman estimates that 95 per cent of corn that was transported in the open water

season was shipped by Lakes. From the Aldrich Report (1893) we have various alternative measures of

Lakes open/closed compared to Porter. Table 2 documents the number of weeks that Porter’s Lakes (L),

and our Lakes and Railroads (LR) and Lakes and Canals (LC) remain open, for each year comprising

the 328 weeks period.6 Canals freeze before the ports of the Lakes, and hence we see longer periods

of Lakes open in the case of Lakes and Railroads. The duration of Lakes open using L, LC and LR

dummies are very similar, and for that reason in the rest of the analysis we stay loyal to Porter and

employ his Lakes dummy, L. Table 2 also describes the trend of periods of stability, measured by PO

and PR. PO is a variable that Ulen (1978) constructed on the basis of internal reports of “price wars”

within the Cartel (the variable is included in the list of Porter’s variables displayed in Table 1). As in

Porter we are not fully confident in that variable, and so we propose another binary variable for periods

of collusion denoted by PR. Our PR variable is set to one when the JEC grain rate was equal to the

Chicago-New York grain rate from the Aldrich Report that Railroads, including the JEC, tried to peg

to. From the table it emerges that PO and PR are similar, but the number of disruptions to Cartel

4For the first twelve weeks we average over any previous available week.
5In our data two observations have min

i

(sit−sit)
σi

> 0, and thus have SMALL1 equal to zero.

6We utilize prices for shipments over Lakes and Railroads, and Lakes and Canals to recover the number of weeks that
Lakes and Railroads, and Lakes and Canals, are open.
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pricing in the JEC is not as great using the PR dummy. It turns out to be very similar to the PN

cheating binary variable estimated by Porter in his hidden regime model, as confirmed by the mean

values and standard deviations reported in Table 1. Our use of data on PR turns out to be important

in our empirical methodology. We will estimate demand and pricing simultaneously but condition the

pricing equation on the expected probability of cartel instability. Our variable PR will be modeled as a

ARMA(1,1) linear probability model.

Coleman shows that generally speaking the weekly discrepancy between a future commodity price

in New York and a spot commodity price in Chicago can be considered a good proxy for the expected

average transportation and storage costs of moving grain from Chicago to New York. This assertion

is empirically backed up using actual data on transportation rates and storage costs from the Aldrich

Report. In general the presence of inventories allowed most of the shipments of grain to benefit from

the slow and cheap option of transportation over the Lakes and Canals all year round. Table 1 presents

definitions and summary statistics for a list of variables we constructed from his raw data. We define

the log of the expected outside option in transportation rates facing the JEC as the following:7

gr∗Et = ln
{
Et
[
ZNYt+1

]
− ZCt

}
. (2)

It is a maintained assumption that price setting on the Lakes and Canals route and inventory manage-

ment could not be influenced by the Railroad Cartel, but pricing on the Lakes and inventory management

could impose exogenous demand cycles on the Railroad Cartel. The speed of the delivery by the JEC

Cartel ensured that if any weekly top ups were necessary in New York to meet demand, the Railroad

Cartel would oblige. The +1 in the expectation of Eq. (2) postulates that it takes one period to ship

the grain via the Lakes from Chicago to New York.

The actual rates for alternative modes of transportation are available from the Aldrich Report. This

can be compared to the expected transportation rate that uses the New York future (delivery within

one month) net of the Chicago spot price, (GR∗E). Figure 1 (a) to (i) depicts the pattern of weekly

shipment rates between Chicago and New York in each year, including the JEC rates (Porter’s GR), the

Great Lakes and Canals rates (GRLC), and GR∗E . We take the latter to represent the true expected

outside transportation options for the JEC when setting its rate. We notice that GR∗E shares the same

trends of the JEC rate, GR, and the rate for shipments over the Lakes and Canals, GRLC. Its level is

closer to, but higher than, the Great Lakes and Canal rates as it includes storage costs and the need to

use Railroads. We note that the rate rises at the end of the Lakes open period, a trend that benefits

both Railroads and the Steamship companies that operate over the Lakes and Canals. Our expected

outside transportation rate variable highlights the role that inventories (controlled by the Elevators)

had in smoothing rate fluctuations over the Lakes open and closed seasons. New York did not accept

high Winter transportation costs, but used inventories to benefit from the low transportation costs of

the Great Lakes and Canals in the open season. The figures seem to validate our choice of GR∗E as a

proxy for the rate of the expected outside transportation mode. Table 3 further confirms our choice of

variable, by showing a strong positive correlation between GR∗E and the rates of alternative modes of

conveyance.

It is interesting to explore whether our expected outside transportation rate, GR∗E , has a determin-

7Indeed if we had to remove our assumption of prompt delivery for Railroads and one period delivery for Lakes, the
difference between Chicago and New York would proxy for general transportation costs, i.e. it would also be inclusive of
the rates charged by the JEC Railroad Cartel. Yet, this should not be worrisome, since Coleman unveils that the JEC had
a rather marginal role in the total amount of grain carried to New York via Chicago. Our proxy is also valid when the
Great Lakes are frozen, since competition from non-JEC Railroad Cartel was present as were inventories from the Great
Lakes in New York.
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istic business cycle. We first look at the rates before the Cartel years (1878-79) in Figures 1(a) and (b).

During Lakes closed the rate increased and then decreased. Such downward revisions on Railroads rates

in the weeks before Lakes opening could reflect expectations of the Lakes open regime. During Lakes

open the rate decreased up to harvesting then increased as we moved to the closing of the Lakes. The

pressure on the price came from New York trying to build up inventories for the Winter after the harvest

came in. These movements in the expected average transportation rates before the formation of the

JEC suggest to us that the opening and closing of the Lakes had effects on pricing in the weeks running

up to Lakes closing and opening. In addition to controlling for exogenous anticipated movements in the

price of outside transportation options to the JEC, whose movement should influence current demand

and pricing (via the ICC inside the cartel), we also control for anticipated exogenous demand cycles - as

motivated by Haltiwanger and Harrington (1991). This is done by creating two variables that reflect the

cumulated number of weeks that Lakes have remained open at a given point in time in a year, NWO,

and the countdown on number of weeks until the Lakes re-open at a given point in time in a year, NWC.

NWO starts with a value of one associated with the first week the Lakes are accessible to navigation,

and reaches its maximum the week prior to Lakes freezing again. The variable is set to zero during Lakes

closed for navigation. As for NWC, it has its maximum the first week the Lakes are not accessible to

navigation and reduces to a value of one the week before the Lakes reopen to navigation. The variable

is set to zero during Lakes open. Rather than having a simple Lakes open and closed dummy we have

varying degrees of pressures coming from the expectations of Lakes opening and closing represented by

NWC and NWO which exhibit an asymmetric sawtooth profile. The latter represents the pressure to

transport grain to inventories in New York after the harvest to avoid exposure to high transportation

prices during the Winter. The former represents Elevator’s increased ability to bargain with the JEC as

the weeks to Lakes opening come nearer. We use these variables to proxy for expectations of increasing

(decreasing) demand as we move along the weeks in the Lakes open (closed) season. Could they just

reflect week effects in current demand rather than expectations of demand? Maybe, but we will verify,

post-regression, that for the same level of current demand, in either Lakes open or closed, estimated

mark-ups are higher going into a period of growing demand and lower going into a slump.

During (1880-1886) these trends in high and low expected outside transportation rates in both Lakes

closed and open periods outlined above are present, but not in all years. In order to plot our expected

outside transportation rates to a JEC business cycle, we first create a variable that avails of the Hodrick

and Prescott (1997) filter and estimate the demand business cycles, B̂CQ. We plot the smoothed cycles

against the actual demand in Figure 2. We note that the smoothed cycles indicate that demand for

the JEC was not always higher in Lakes closed periods of each cycle. One might have assumed that

the JEC did more business in the Winter when competition was weak, but inventory management in

New York clearly made demand cycles for the JEC over Lakes open and closed regime more complex,

allowing competition from the Lakes and Canals to have an all year round effect. In four out of the six

Lakes open periods we see shipments increasing as the number of weeks to Lakes closing comes closer

(when prices tended to rise). In most of the Lakes closed periods we see output increasing as the number

of weeks to Lakes open shorten (when price tended to fall). The weeks that did not have such cycles

tended to be when our PR dummy indicated a period of cartel instability. For this reason we plot the

smoothed output cycle against our expected outside transportation rate, GR∗E , along with NWC and

NWO, in Figure 3.

Overall we feel that we can control for exogenous deterministic cycles that should have an influence

on JEC demand and pricing during periods of Cartel stability. We will also examine their role in terms of

Cartel instability, while allowing for an unexpected break in the cycle to play a role here. We do this by
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controlling for unexpected commodity market price movements. Unexpected commodity market shocks

have the ability to change expected demand by Elevators and create a mistake in the calculation of an

expected transportation rate for moving grain between Chicago and New York. We explore whether

such external shocks lead to errors in JEC rate setting which in turn might trigger a period of Cartel

instability.

Elevators determine the optimal demand for transportation based on future commodity prices and

inventory models. Their plan was simple: when the harvest came in there was pressure to build in-

ventories using the cheaper Lakes transportation during the latter half of the Lakes open period. The

inventories could be used even when the Lakes were closed. Anytime inventories fell below a certain

threshold, Elevators urged to top them up as soon as possible. Elevators had the key role of storing

the commodity and providing a hedge against random consumption and harvest shocks. Based on the

information they had available, they solved inter-temporal (dynamic) models to determine the optimal

amount of grain to keep in stock. A by-product of their optimization was the demand for transportation.

We relate the amount of grain available as inventory in Elevators as follows:

Yt = Yt−1 +Mt − Ct, (3)

where Mt is the amount of grain imported in period t (mainly from Chicago) and Ct is period t con-

sumption (mainly the amount of grain shipped to Europe). The volume imported is the result of

transportation by ship and/or train.8 Similarly to Thurman (1988) and Pindyck (1994) we formulate

the cost of holding inventories as the sum of a unit cost for the physical use of Elevators, u, and a function

of current inventories, future expected consumption, and current commodity prices, F (Yt, Et[Ct+T ], Zt).

We assume F to be a well behaved function, convex in Y and increasing in C and Z. The negative

of the marginal cost of inventories is the net benefit of an extra-unit of inventory, and is known in the

literature as “marginal net convenience yield”,9

MNCY (Y ;u) ≡ −FY − u, (4)

where the partial derivative of F with respect to the argument Y is assumed negative, FY < 0, and the

cross derivatives FY C and FY Z are assumed to be zero, FY C = FY Z = 0. We sketch the marginal net

convenience yield function in Figure 4.

The presence of future contracts and the no arbitrage condition, due to all profitable opportuni-

ties being exploited by an optimal allocation of inventories across time, require the following equality

condition to hold

MNCY (Y Et ) = Zt −
(

1− δ
1 + r

)T
Et [Zt+T ] . (5)

That is, the difference between a spot commodity price Zt, and the future commodity price T periods

ahead, Zt+T , discounted for the depreciation commodity rate (δ) and forgone interest rate (r), can be

used to identify the marginal net convenience yield. As documented in Coleman, New York (NY) was by

far the main receiving city from Chicago (C). So, we can use the difference between a spot and a future

price in New York as a good measure of the (expected) marginal net convenience yield. This will be a

good control for expected demand in New York as perceived by the JEC and its competitors. Without

8Given that Railroads can convey grain within three days, we assume that they are able to provide immediate delivery
(within the week). In addition, we postulate that the alternative modes of transportation meet deliveries within the
following period. In this way Mt casts the sum of transport by Railroads (R) and by Lakes (L) as Mt = MR

t +ML
t−1.

9A term introduced by Working (1949).
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loss of generality, in the rest of the paper we utilize a simplified version of Eq. (5) that assumes δ = r = 0.

MNCY Et ≡MNCY (Y Et ) = ZNYt − Et
[
ZNYt+1

]
. (6)

Our next variable captures errors in the expectations of commodity prices in New York. This will be

a key variable in our modeling of Cartel instability. Our error in expectations variable is defined as,

ERt = Et−1
[
ZNYt

]
− ZNYt . (7)

If Eq. (7) turns out to be negative, the realization of the commodity price in New York at time t, i.e.

a spot price at time t in New York, would turn out to be higher than that expected at time t − 1.

Note that the expected future price in New York enters both the marginal net convenience yield and

our proxy for the expected transportation costs. A negative error in expectations at time t goes along

with the two inequalities at time t − 1: MNCY Et−1 > MNCYt−1 and gr∗Et−1 < gr∗t−1. The former sug-

gests that the Elevators have accumulated a level of inventories below the optimal level that they would

have built up under certainty. The Cartel realizes that it has underestimated demand in its price and

quantity setting. The inequality of gr∗ suggests that the Cartel expected the price of its competitors to

be lower than it would have been framed under certainty. We will empirically estimate the impact of

gr∗E and MNCY E on the general run of demand and price setting in the JEC. We would expect the

rate of the outside transportation options to the JEC to come in positive in our model of demand and

optimal price setting. An error in the expectation of the price of the outside option as outlined above

would create a situation that the JEC should have set a higher rate and transported more shipments.

This represents a clear loss in revenue for the Cartel. We will examine whether errors in expectations

in prices of New York commodity markets are factors, among others, that push a higher probability of

instability in the JEC. The analysis above summarizes the data previously used and motivates the use of

the new data that we use to extend the basic structural model in Porter to be outlined in the next section.

3 The model

In this section we first delineate the model developed by Porter. We then introduce our approach to

modeling and estimation. Like Ellison (1994), our extensions are done to tackle the issue of omitted

variables in demand, to explore the causes of Cartel breakdown and to evaluate the impact of determin-

istic demand cycles on pricing, shipments and stability. Unlike Ellison we use a two-step semiparametric

procedure which is largely motivated by our use of previously omitted data into the system of the model.

More data allows us to have less structure in the estimation of stability, mark-ups (pricing) and demand.

While the results are broadly similar to Ellison in terms of our modeling of stability and demand, we do

find that the anticipated cyclical nature of demand is important for mark-ups (pricing) during periods

of Cartel stability. Before we outline the model and our extension, we bring attention to the particular

notation that we make use of. From here forward, lower case letters will denote natural logs of their

original variables (i.e., gr will stand for lnGR).

3.1 Porter

Demand Equation

qt = α0[t] + α1grt + α3Lt + U1t, (8)
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where grt is the natural log of the JEC grain rate per bushel shipped in week t, and qt the natural log

of the total quantity of grain shipped by Railroad that week. Lt is a dummy equal to one when the

Great Lakes are open to shipping, and zero otherwise. U1t is a mean zero error term. The parameter

α1 is expected to be negative. The parameter α2 is purposely omitted and will be introduced in the

next section, but we can anticipate it is going to be the parameter associated with the expected outside

transportation grain rate. The time-varying coefficient α0[t] encompasses a constant and month dummies.

Pricing Equation

Porter estimates the following pricing equation:

grt = β0[t] + β1qt + β2St + β3It + U2t, (9)

where U2t is a mean zero error term generated by errors in marginal costs. This error term and the first

part of the pricing equation, β0[t] + β1qt + β2St, are assumed to be the linear marginal cost function.

He denotes with St a set of structural dummies that accommodate entry/exit and with β0[t] a constant

augmented with month dummies. The remaining variable, It, is a dummy that equals one during a

collusive regime, and zero otherwise. This is motivated by Green and Porter (1984) to capture a time

varying conduct parameter θt. The key assumption is that there are only two regimes: one that is

collusive and one that is reversionary. We will model conduct using a nonparametric function of several

observable variables to capture interesting week to week dynamics in θt. This is a key departure from

Porter and Ellison in our modeling of mark-ups. Ellison, when he interacts It with indices of anticipated

cycles, does move a step towards our approach, which is outlined below.

The price-cost margin (PCM) function is given by the ratio − θt
α1
, and can be derived from the equa-

tion: β3It = −ln (1 + θt/α1). Theory predicts that θt is higher during collusive regimes and that we

should expect β3 to be positive, as α1 is expected to be negative. When It is known, using the PO

cheating variable collected by Ulen (1979), Porter estimates Eqs. (8) and (9) using 2SLS. Identification

comes from the fact that there is an explicit functional form, derived in Porter, for marginal costs, and

that there are demand and pricing equations exogenous shifters. When It is unknown, a new variable is

estimated using an endogenous switching (hidden) regime model, as in Lee and Porter (1984).10 This is

the way that Porter constructs his PN binary variable. As outlined in the data section of this paper we

use a PR binary variable, constructed from the Aldrich Report (1893), to reflect stability or not. This

turns out to be similar to the estimated PN binary variable of Porter and will be shown in the empirical

section to pick up the documented hidden regime in the pricing equation of Porter. Treating PR as data

allows us to employ a two-step estimation procedure to be outlined below.

3.2 Our Extension of Porter

We employ a classic simultaneous equations model for demand and pricing equations. Pricing will be

conditioned on the probability of the Cartel remaining in a collusive or stable regime.

Cartel Stability:

10In this case the demand and pricing equation error terms are assumed to be normally distributed.
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To allow for persistence in regimes, we model Cartel stability as an ARMA(1,1) linear probability model

PRt = φPRt−1 + γ0 + γ1Nt−1 + γ2Lt−1 + γ3NWCt−1 + γ4NWOt−1

+γ5ERt−1 + γ6ELt−1 + U3t

U3t = ρVt−1 + Vt. (10)

In general the JEC sets rates to ensure that the ICC inside the cartel is binding. The results in Porter

are replicated and accepted using our PR variable. PR set to zero represents finite periods of revisions.

The interesting issue relates to what is triggering these revisions. We compete different theories against

one another. Each theory provides us with a different reason for the ICC to change. If the JEC fails

to adjust its rate optimally these factors can lead to a period of instability. As in Porter (1985) and

Vasconcelos (2004) we account for the number of firms in the Cartel, N, and for the opening and closing

of the Lakes as internal factors that may effect the ICC. We add external controls for the cumulated

number of weeks that Lakes remain open, NWO, and the countdown on number of weeks until the Lakes

re-open, NWC to control for the effect of anticipated deterministic cycles modeled in Haltiwanger and

Harrington (1991). We also include the internal set of triggers, EL, used by Ellison, reflecting unusual

movements in firm level market shares. Finally, we introduce our new variable that reflects errors in

expectations of corn prices in New York, Eq. (7). Negative errors in expectations reflect a situation

where the JEC is likely to have underestimated expected demand and overestimated price competition

from outside transportation modalities. Clearly, the sub-optimal JEC rates can lead to an unstable ICC.

We put forward unexpected commodity market shocks as the key factor that can threaten the Cartel’s

stability. The variable Vt denotes a mean zero error term.

Demand Equation:

We extend Porter’s demand equation (8) in two ways. First, we expand the set of variables in the linear

structure; most importantly we introduce the price of a substitute transportation mode. Secondly, we

control for expected demand cycles using a nonparametric function. Ellison allows for hidden omitted

variable regimes in demand and serial correlation in the demand residuals. We address this issues by

including new control variables and add a lagged dependent variable in demand to allow for partial

adjustments. The latter is done as a robustness test on our estimation results. The baseline demand

equation that we estimate is:

qt = α0[t] + α1grt + α2gr
∗E
t + α3Lt + Ω1

(
MNCY Et , NWCt, NWOt

)
+ U1t, (11)

Equation (11) depends on the own grain transportation rate, grt, and on the expected rate of the out-

side transportation rates, gr∗Et . Lt is a dummy equal to one when the Great Lakes are open to shipping,

and zero otherwise. U1t is a mean zero error term. Here the parameter α0[t] includes a constant, month

dummies and also year dummies. To control for expected deterministic demand cycles, not captured

by our price variables, we also include the variables number of weeks to Lakes opening and Lakes open,

NWC and NWO respectively, and the (expected) marginal net convenience yield (inventory stocks in

New York), MNCY , in an unspecified Ω1 function. We employ a semiparametric estimation set out in

Appendix A and this will be done simultaneously with the pricing equation that we outline below.

Pricing Equation:

We enrich Porter’s pricing equation (9) in two ways. First we include new variables. A second clear
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point of departure is the absence of It, a dummy that equals one during a collusive regime, and zero

otherwise. This is replaced with a Ω2 function that will allow us back-out week to week dynamics in θt

for a given set of demand primitives:

grt = β0[t] + β1qt + β2St + Ω2

[
gr∗Et , NWCt, NWOt, Et (PRt+1)

]
+ U2t, (12)

Having an estimate of Ω2(·) we can back-out the price-cost margin, − θtη , from the relation Ω2t =

−ln(1 + θt/η), where η is the total market elasticity, η ≡ α1 +α2. In other words, we model Porter’s un-

observable It with observables in a nonparametric form, Ω2 (·), and not as a hidden binary regime. The

observables used control for expected exogenous pricing cycles from external competition, gr∗E , NWC,

NWO and for the predicted probability of Cartel stability r weeks ahead, P̂Rt+r. We believe the latter

is a good approximation to the way that Gallet and Schroeter (1995) empirically relate the mark-up at

time t to the discounted expected value of future JEC collusive profits. We control for the effect on the

mark-up of movements in expected future demand, as motivated by Haltiwanger and Harrington (1991),

through NWC and NWO. We use NWC and NWO to proxy for expectations of demand. 11

The unspecified function Ω2 (·) is aimed at catching the mark-up part of the pricing equation. We

do not make any parametric assumption on Ω2 (·) but rather exploit the data and model Ω2 (·) nonpara-

metrically. We include in the function all those variables that we think can affect directly, and interact

with the other variables, to drive the mark-up. As in Porter, once we specify marginal costs as the sum

of the error term and β0[t] + β1qt + β2St, the deterministic residual becomes a function of the mark-up.

One disadvantage with this approach is that some of the controls for marginal cost could clearly be part

of the mark-up. Hence we have to be careful about the interpretation of the level of the mark-up.

4 Results

Porter’s Hidden Regime:

The 2SLS and ML columns 1-4 of Table 4 reproduce the results of Porter’s Table 3. Columns 5-8

repeat the estimations, but replace his variable PO with our observed cheating variable, PR, constructed

from the Aldrich Report. The main aim of this exercise is to see whether PR estimates the incidence of

cheating similarly to the variable PN, endogenously estimated in Porter. Table 4 suggests that the use

of PO or PR in general produces comparable results. There are differences worth mentioning however.

The employment of PR, instead of PO, raises the R2 in the pricing equation from 0.32 in column 2 to

0.67 in column 6, for the 2SLS results. This is lower than 0.78 in column 4 when the hidden regime is

endogenously estimated using PO as the original variable. The same ML estimator can increase the R2

to 0.85 in column 8 when using PR as the initial variable. The subsequent columns 9-16 are a rerun of

the estimations in columns 1-8, with the addition of year dummies as controls in the demand equation.

We see that controlling for year dummies in demand strengthens the explanatory power of the demand

side. We run an independent two-sample Student’s t-test and find that controlling for year dummies

makes the estimated coefficients on the cheating dummy in the 2SLS estimators statistically different

from one another, at the 5 per cent significance level. Also, the same test highlights a significant dif-

ference at the 1 per cent level in the estimated coefficients on the cheating dummy of the ML(PN) and

11We capture exogenous movements in current demand using the price gr∗E , while month (and when applicable year)
dummies and endogenous movements in current demand are accounted for through cost. NWC and NWO may just reflect
week effects in current demand but the controls are consistent with and do control for the effects of expected demand.
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2SLS(PR) estimators, inclusive or not of year dummies in demand. No significant difference is found for

the estimated price elasticity variable. Hence the estimated level of price-cost margin may differ across

specifications that originally use PN or PR. Yet, when we compare columns 11 and 12 (Porter’s PN )

to columns 13 and 14, our 2SLS estimates using PR performs just as well. There will only be slight

differences in the incidence of price wars. In Table 1 we report basic summary statistics for PO, PN,

PR and PRN. While PO is very different from the others, PN, PR and PRN are very similar. Hence,

our use of PR and inclusion of year dummies in the demand equation does not change the key Porter

result. There is a hidden regime in the pricing equation that is clearly linked to the “price wars” that

occurred intermittently in this Cartel. Therefore when we estimate our demand and pricing equations

we need to condition on being in a regime of Cartel stability or not as defined by PR.

Causes of Cartel Instability:

The first four columns of Table 5 model our PR variable, which identifies periods of Cartel stability.

We estimate the linear probability model with the ARMA (1,1) specification introduced in Eq. (10). The

estimations highlight a strong persistence in the state of the dependent variable, as indicated by the high

value of the ρ parameter. Once a shock brings the dependent variable from a state of stability to one of

instability, it may take a certain number of weeks before it goes back to stability. The span of instability

is embedded on the intensity of the shock that has caused the drifting away, and on realizations of other

opposite (in sign) future shocks.

Another key variable that turns out significant in explaining Cartel stability is the error in expecta-

tions of the commodity price in New York introduced in Eq. (7). If the error pans out to be negative,

then the spot price at time t in New York would prove to be higher than that expected at time t−1. We

have discussed earlier how that relates to the expected marginal net convenience yield and the expected

outside transportation rate. Elevators will find out that inventories were below the optimal level and

transportation companies will realize that freight rates could have been expected to be higher. The JEC

will underestimate demand and formulate an expected rate of its competitors to be lower than it would

have framed under certainty. In theory the JEC should have set a higher rate and transported more

shipments to sustain the ICC constraint. This represents a clear mistake and potential loss in revenue

for the Cartel and creates a higher probability of instability in the JEC. We find clear evidence that

unexpected demand shocks in corn markets in New York triggered instability in the JEC. This is con-

sistent with Green and Porter (1984) and is similar to a finding in Ellison (1994), who worked with the

random part of the demand residual to model unexpected demand shocks. We have gone a step further

and linked it to errors in expectations of corn market prices in New York. Anticipated demand cycles,

the cumulated number of weeks that Lakes remain open, NWO, and the countdown on number of weeks

until the Lakes re-open, NWC, which control for the effect of anticipated deterministic cycles modeled

in Haltiwanger and Harrington (1991), are insignificant. This is also consistent with the findings of

Ellison who used different endogenous indices to control for expected demand using the autocorrelated

demand residuals, among other components. The same important result, that demand shocks and not

anticipated cycles were the key drivers of Cartel instability, emerges. This supports the theory of Green

and Porter (1984).

As in Porter (1985) and Vasconcelos (2004) we account for the number of firms in the Cartel, N, and

for the opening and closing of the Lakes as factors effecting the ICC constraint. In contrast to them, the

number of firms is never significant in our model, while the probability of Cartel instability is more likely

to happen in the Lakes open regime. A feature of the Lakes open regime is that demand tends to be low

for the JEC up to the harvesting and then increases rapidly up to Lakes closing. We will see that profits

for the JEC, which we estimate post-regression analysis, were “normally” highest in the latest weeks of
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Lakes open, when prices and shipments both increased. Errors in expectations about demand in this

period, in particular setting price and shipments below the optimal level, would be very problematic for

the Cartel. Finally, we include the set of triggers, EL, used in Ellison, and find as he did that unusual

movements in market shares inside the JEC were not as important as the common external demand

shocks that came from New York which all firms faced.

Estimating Mark-Ups and Profits:

We estimate mark-up and profit dynamics for the JEC using a classic simultaneous equations model

for demand and pricing equations. Pricing will be conditioned on the probability of the Cartel remaining

in a collusive, or stable, regime. We utilize the specification displayed in column 4 of Table 5 to compute

the predicted probability of Cartel stability P̂Rt+1, which we incorporate in our modeling of Ω2(·) in

the regressions documented in Table 6.

In the 2SLS columns for the baseline model in Table 6, we linearize the Ω2(·) function in the pricing

equation, and the Ω1(·) function in the demand equation. We can think of this as a polynomial of order

one in the variables that enter the two functions. It has the advantage that it simplifies the estimator

to a 2SLS approach which, given the use of year dummies, can be compared to the results documented

in columns 13-14 in Table 4. We can judge whether these new control variables have interesting partial

effects in terms of sign, magnitude and significance. The down side is that we are missing out on po-

tentially interesting interactions between the variables in these functions. For example, our controls for

deterministic cycles in Ω2(·), which are: gr∗E , NWC and NWO could impact JEC rate setting very

differently when interacted with the predicted probability of Cartel stability, P̂Rt+1. Hence we also

estimate and document the results of using a semiparametric GMM estimation for this baseline model.

We now discuss the results for the baseline model. Our variable, gr∗E , that controls for the expected

price on alternative modes of transportation, comes in significant in demand. An increase in the grain

rate of the alternative modes of transportation increases demand for shipments by Cartel. This is an

important result as it will drive, along with the JEC grain rate, the total market elasticity, η ≡ α1 +α2,

which we need for calculating our price-cost margin. The variables in our Ω1(·), that control for an-

ticipated demand, such as the (expected) marginal net convenience yield, MNCY E , for inventories in

New York, are not significant as independent partial effects. The prices are doing all the work in the

equation.

In the pricing equation, all our new variables in Ω2(·) come in significant. All things equal, the

accumulation of weeks to Lakes closing, NWO, puts an upward pressure on pricing and the loss of

weeks to Lakes opening puts a downward pressure on prices, NWC. The expected price of the outside

transportation options, gr∗E , creates an upward pressure on price. We see the JEC as a price follower

in this optimal response function. The estimated probability of stability, P̂Rt+1, comes in significant

and has important upward pressure on pricing. The linearized Ω2(·) function can be backed out. There

is no real change in the sign and significance of the other variables, except for output in pricing being

positive and significant. The overall explanatory power of the supply side model is now higher, giving

us increased confidence in our attempts to estimate the Ω2(·) function.

This baseline model is also estimated using a semiparametric GMM estimation method to allow Ω2(·)
in pricing and the Ω1(·) in demand to be estimated nonparametrically. We adjust the Robinson (1988)

Difference Estimator in order to account for the endogeneity in the system of simultaneous equations

(see Appendix A for details on the estimator). The results from the semiparametric estimation for

the baseline model are presented in the semiparametric columns of Table 6. The sum of the own- and

cross-price elasticities are now estimated to be lower. The Ω2(·) function is computed to be a bigger

deterministic component as the overall explanatory power of the supply side model has increased from
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0.68 to 0.85, due to implicit interactions between the variables in the Ω2(·) function.

Ellison allows for serial correlation in the demand equation. To improve the overall explanatory power

of the demand equation and get better estimates of price elasticities we model demand as a partial ad-

justment model. The structure in the demand equation suggests that we do not control for differences in

actual rates (which change daily) and the official rate (set weekly) well enough and we should allow for

a one week partial adjustment. Our results for this model using a 2SLS estimator of our linear modeling

are presented in columns 5-6, and its semiparametric estimation is presented in columns 7-8, of Table

6. The parameters and standard errors have to be divided by (1 − β̂[qt−1]) to be comparable to those

of the baseline model. The explanatory power of the demand model is now 0.74. More importantly, we

see that the sum of the “adjusted” own- and cross-price elasticities are higher when compared to the

baseline model. Hence, our estimated mark-ups will be affected by the lagged dependent variable on

the demand side. There are some changes on the pricing side. The linear modeling of Ω2(·) shows the

expected outside transportation rate has a bigger and more significant effect. The estimated cheating

probability has a smaller coefficient. Output in marginal cost is showing some economies of scale. Unlike

the earlier literature, having controlled effectively for the omitted variables and partial adjustment, we

now observe economies of scale in marginal costs.12 While Fabra (2006) shows us that the results of

Haltiwanger and Harrington (1991) would be less likely to hold in industries with capacity constraints,

economies of scale theoretically reinforce the mechanisms in Haltiwanger and Harrington (1991).13 The

explanatory power of the pricing equation increases further to 0.87 when estimated semiparametrically.

Our Ω2(·) term will be estimated to be slightly different in the presence our partial adjustment model.

Our estimated mark-up dynamics are calculated using the estimated Ω2(·) in the pricing equation

and η in demand equation from the four models documented in Table 6. The top four graphs of Figure

5 are plots of the estimated price-cost margin, − θ̂tη̂ , overlapped by their smoothed cycles, constructed

from our four structural models of equilibrium pricing and demand. The estimates of the price-cost

margin are plotted over the Lakes opening and closing periods, and against periods of Cartel instability

as defined by our PR=0 variable.14 The bottom four graphs are the corresponding plots of estimated

profit (overlapped by their smoothed cycles), constructed from our four structural models.15

The estimated cycles from our four models in Table 6 are reasonably similar in trends but differ in

levels. Clearly, the weeks of Cartel instability are associated with unusually low mark-ups and profits for

the Cartel. Railroads made losses over some spells when PR was zero. Our semiparametric estimation

of the partial adjustment model of demand with supply would suggest that the Cartel actually incurred

sustained losses during these periods. In periods of stability we do see some interesting “stylized” cycles

emerging. In Lakes closed regimes we see price-cost margins drop as Lakes opening approaches. While

mark-ups are low at the start of Lakes open they consistently rise over the period. More importantly,

looking at profit cycles, the periods coming to the end of Lakes open normally generated the highest

weekly profits for the Cartel. The race against the clock in inventory management normally induced

increases on the outside transportation rates (captured by gr∗E), hence the volume of trade and the

grain rate for the Cartel can both increase. Given that the JEC had higher monopolistic power during

the Lakes closed regime, it is interesting to see profits peaking at the end of the Lakes open periods.

12Walters (1967) has surveyed estimates of cost function in 34 industries, and found evidence of constant or increasing
returns to scale.

13When demand is expected to be high, then marginal costs are expected to be low. A threat of a revision to a zero
profit becomes more binding as expected demand rises, and less binding as expected demand falls.

14Sub-figures 5(a) through (d) have been set on to share the same constant. That is, from the correspondent semi-

parametric estimation of Ω̂2(·) we have subtracted the constant computed in the linearized semiparametric case (2SLS
estimation).

15Cartel profit is computed as mark-up times quantity and is expressed in tens of thousands of dollars.
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This highlights the role and the need to have data on the external pressures that come from inventory

management in New York and pricing over the Lakes and Canals on the JEC.

Cyclical Nature of Mark-Ups:

A core contribution of this paper is to provide evidence of cyclical mark-ups over our documented

deterministic demand cycles. We represent the smoothed price-cost margin and profit cycles against

normalized output cycles in Figure 6. Can we see obvious counter or pro-cyclical movements of mark-

ups with output? What emerges is that during periods of Cartel stability we see four Lakes open episodes

where output and price-cost margin move up together as we move towards Lakes closing. This generates

rising profits that peak just before the Lakes close. We also see that during periods of Cartel stability

we have five Lakes closed episodes, where output is rising but price-cost margins are falling as we move

closer to Lakes opening. Periods of instability are less clear-cut but look counter-cyclical. As Ellison

points out, we are not asking the right question here. What we should be asking is whether our estimated

mark-ups are supportive of the mechanisms in the theory of Haltiwanger and Harrington (1991). To test

their theory during the collusive periods, we regress price-cost margins during upswings and price-cost

margins during downturns on the number of firms and a quartic function of the demand business cycle.

The results from the regression are plotted in Figure 7.16 The Haltiwanger and Harrington (1991) theory

seems to be validated: for the same level of demand, the price (mark-up) is lower when the JEC is in

a period of prolonged decline in demand, compared to coming into a period of prolonged increases in

demand. This is powerful evidence that during periods of stability the JEC did price optimally over

deterministic demand cycles creating interesting dynamics in mark-ups that reiterate those found in

Borenstein and Shepard (1996). This is strong evidence that pricing in cartels react in a predictable way

to anticipated seasonal cycles.

5 Conclusions

The use of theory and data from Coleman (2009) allows us to control for the expected rate of transporta-

tion in alternative modalities and unexpected commodity price shocks in New York. These variables

have a tremendous impact on the modeling of price and quantity movements in the JEC. Analysis of

the JEC data, without controlling for the transportation rates of grain over the Great Lakes and Canals

from the dominant competitor, was always going to be problematic. We find that these additional vari-

ables were necessary to model demand primitives. The industry elasticity of demand is made up of an

important cross-price, as well as an own-price, effect. These demand primitives are needed to construct

the mark-up from the estimated nonparametric deterministic component (pricing over marginal cost)

in the pricing equation. In addition, the expected price of transportation outside the JEC, because of

harvesting and inventory management over the Great Lakes and Canals, has distinctive deterministic

demand cycles for the Railroad Cartel to set prices against. In modeling pricing above our marginal

cost nonparametrically, we find evidence that such external deterministic demand cycles do matter, in

addition to an expected probability of Cartel stability. The latter is found to be triggered by unexpected

commodity price shocks in New York rather than deterministic demand cycles. This is consistent with

cartel breakdowns as modeled in Green and Porter (1984). We estimate the equilibrium price path

semiparametrically, simultaneously to demand, and conditioned on the estimated expectation of cartel

16The spikes in the figures are due to the number of firms varying from three to five during the period. We have no
spikes when there are four firms, we have decreasing spikes when we have five firms, and increasing spikes in case of three
firms.
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stability. Linear estimates of the parameters of marginal cost allow us to back-out the nonparametric

function and, using our demand primitives, get our weekly estimates of the price-cost margin for the

JEC.

Our controls for external deterministic demand cycles, lead us to estimate rich weekly mark-ups and

profits cycles during periods of Cartel stability. For the same volume of sales, the mark-up in a prolonged

boom (later weeks of Lakes open) tends to increase when compared to the mark-up coming into a pro-

longed recession (later weeks of Lakes closed). We find the JEC set prices over demand cycles in a way

that supports the theoretical considerations in Haltiwanger and Harrington (1991). As highlighted in

Borenstein and Shepard (1996), such cyclical pricing may be a way of detecting illegal pricing behavior

in a modern day cartel.
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Table 1: Summary Statistics (Variables in alphabetical order)

Variable name Definition Obs. Mean sd Min. Max.

PORTER

GR The official grain rate, in dollars per 100 lbs. 328 0.246 0.067 0.125 0.400

L
Lakes dummy, reported as one when Lakes are
open, zero otherwise.

328 0.573 0.495 0 1

PO
Cheating dummy as reported in the Railway
Review and Chicago Tribune.

328 0.619 0.486 0 1

PN Estimated cheating dummy. 328 0.750 0.434 0 1

Q Total quantity of grain shipped, in tons. 328 25,384 11,632 4,810 76,407

S1

Dummy equal one from week 28 in 1880 to
week 10 in 1883, zero otherwise. This period
reflects the opening of a new line by Grand
Trunk Railway.

328 0.424 0.495 0 1

S2

Dummy equal one from week 11 in 1883 to
week 25 in 1883, zero otherwise. This period
reflects the opening of a new line by New York
Central.

328 0.046 0.209 0 1

S3

Dummy equal one from week 26 in 1883 to
week 11 in 1886, zero otherwise. This period
reflects the entry of Chicago and Atlantic Rail-
ways.

328 0.433 0.496 0 1

S4

Dummy equal one from week 12 in 1886 to
week 16 in 1886, zero otherwise. This period
reflects the departure of Chicago and Atlantic
Railways.

328 0.015 0.123 0 1

ELLISON†

N Number of firms (railroads) 328 4.351 0.627 3 5

BIG1
Unusually high market share of one firm 327 1.072 0.548 0.130 3.156
(measure 1). [1.091] [0.569] [0.040] [2.971]

BIG2
Unusually high market share of one firm 327 1.141 0.680 0.169 3.975
(measure 2). [1.241] [0.710] [0.185] [4.235]

BIGQ
Unusually high market share of one firm 327 1.971 0.945 -0.148 4.888
(measure 3). [1.174] [0.516] [0.158] [2.973]

SMALL1 Unusually small market share of one firm. 327 1.139 0.700 0 6.116
[1.230] [0.737] [0.116] [5.757]

† In square bracket the values computed by Ellison. Due to a different way of averaging over the first twelve weeks,
our reproduction of Ellison’s variables is slightly off from the original.
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Table 1: Summary Statistics (Cont.)

Variable name Definition Obs. Mean sd Min Max

OUR CONSTRUCTED VARIABLES

B̂CQ
Estimated Output Business Cycle (estimated
using Hodrick and Prescott’s (1997) filter).

328 25,384 6,973 10,517 41,485

ER
Error in expectations. Recovered from the dif-
ference between GP0N lagged one period and
GPN.

320 -0.008 0.058 -0.393 0.554

GPC
Chicago spot (call) corn prices (New York
Times).†

328 0.889 0.209 0.603 1.482

GP1C
Chicago future corn prices for delivery next
month (next 4 weeks), New York Times.†

328 0.880 0.202 0.594 1.424

GPN
New York spot (call) corn prices (New York
Times).†

328 1.105 0.187 0.817 1.946

GP0N
New York future corn prices for delivery within
the month (New York Times).†

320 1.097 0.186 0.815 1.964

GP1N
New York future corn prices for delivery next
month (next 4 weeks), (New York Times).†

328 1.084 0.178 0.817 1.572

GP2N
New York future corn prices for delivery in two
months (in 8 weeks), (New York Times).†

328 1.082 0.180 0.817 1.574

GR∗
Proxy for transportation rates of competitors
≡ (GP0N −GPC).

320 0.208 0.085 0.010 0.750

GRAll
Grain rate of transport by All Railroads in dol-
lars per 100 lbs (Aldridge’s report). Available
for the period 1878-91.

328 0.254 0.059 0.140 0.400

GRLC
Grain rate of transport by Lakes and Canals in
dollars per 100 lbs (Aldridge’s report). Avail-
able for the period 1878-83.

138 0.153 0.046 0.063 0.288

GRLR
Grain rate of transport by Lakes and Rail-
roads in dollars per 100 lbs (Aldridge’s report).
Available for the period 1878-91.

190 0.185 0.044 0.110 0.295

LC
Lakes and Canals dummy, reported one when
GRLC > 0, zero otherwise.

138 0.421 0.494 0 1

LR
Lakes and Railroads dummy, reported one
when GRLR > 0, zero otherwise.

190 0.579 0.494 0 1

MNCYE
Proxy for (expected) Marginal Net Conve-
nience Yield ≡ (GPN −GP0N).

320 0.010 0.020 -0.045 0.123

NWC
Yearly de-cumulative Number of Weeks to the
opening of Lakes (zero when open).

328 4.159 6.282 0 23

NWO
Yearly cumulative Number of Weeks the Lakes
remain Open (zero when closed).

328 9.311 10.636 0 34

PR

A dummy equal one if the JEC grain rate was
equal to the Chicago-New York grain rate that
Railroads, including the JEC, tried to peg to;
zero otherwise (Aldridge’s report).

328 0.765 0.424 0 1

PRN Estimated PR dummy. 328 0.759 0.428 0 1

† Weekly average of daily prices, where a daily price is the average of the minimum and maximum price of the day.
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Table 2: Number of Weeks Lakes Open L, Lakes and Railroads Open LR, Lakes and Canals Open LC.
Number of Weeks of Collusion based on PO and PR

Year N. Weeks L LR LC PO PN PR PRN

1880 52 34 33 33 52 52 51 52
1881 52 28 29 26 15 26 26 26
1882 52 33 35 32 48 41 40 41
1883 52 33 31 27 47 52 49 52
1884 52 31 32 . 22 33 26 33
1885 52 29 30 . 12 26 24 29
1886 16 0 0 . 7 16 15 16
Tot. 328 188 190 118 203 246 251 249

Table 3: Correlations

GR GRLC GRLR GR∗

GR 1.00 (328)
GRLC 0.65† (138) 1.00 (138)
GRLR 0.79† (190) 0.86† (137) 1.00 (190)
GR∗ 0.65† (320) 0.81† (135) 0.62† (187) 1.00 (320)

In bracket number of observations.
† Significant at 1%.
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Table 5: ARMA (1,1) Cartel stability estimations

VARIABLES PR (=1 Collusion)

C 1.605 1.587 1.662 1.714
(2.979) (2.969) (3.019) (3.019)

Nt−1 -0.054 -0.057 -0.045 -0.053
(0.076) (0.076) (0.073) (0.077)

Lt−1 -0.308* -0.302 -0.311* -0.317*
(0.185) (0.188) (0.186) (0.181)

NWOt−1 0.006 0.006 0.006 0.007
(0.010) (0.010) (0.010) (0.010)

NWCt−1 -0.003 -0.002 -0.003 -0.003
(0.011) (0.012) (0.012) (0.012)

ERt−1 0.561*** 0.571*** 0.569*** 0.564***
(0.218) (0.215) (0.218) (0.213)

BIG1t−1 0.024
(0.034)

BIG2t−1 0.028
(0.023)

BIGQt−1 -0.017
(0.025)

SMALL1t−1 0.045*
(0.026)

PRt−1 0.791*** 0.788*** 0.787*** 0.797***
(0.051) (0.051) (0.052) (0.051)

Vt−1 0.045 0.047 0.049 0.026
(0.067) (0.066) (0.065) (0.068)

Month Dummies NO NO NO NO

Year Dummies NO NO NO NO

Obs. 318 318 318 318

R2 316/318 316/318 316/318 316/318

Obs. P̂R < 0 1/318 1/318 1/318 1/318

Obs. P̂R > 1 52/318 49/318 50/318 59/318

ll -10.305 -9.725 -10.420 -8.478

Robust standard error in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
We employ an optimization method that switches between the BHHH
and the BFGS algorithm.
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Table 6: Estimations

Baseline Model Partial Adjustment Model†

Linear 2SLS Semiparametric GMM Linear 2SLS Semiparametric GMM
1 2 3 4 5 6 7 8

VARIABLES q gr q gr q gr q gr

C 8.493*** -2.477*** 2.898*** -1.132***
(0.421) (0.502) (0.465) (0.330)

Lt -0.582*** 0.119 -0.284*** 0.149
(0.122) (0.457) (0.093) (0.345)

NWCt -0.013 0.023*** -0.005 0.022***
(0.013) (0.006) (0.009) (0.006)

NWOt 0.012 0.018*** 0.013* 0.016***
(0.009) (0.004) (0.007) (0.004)

MNCYEt -0.402 0.181
(1.054) (0.769)

grt -1.094*** -0.774*** -0.572*** -0.426**
(0.195) (0.184) (0.160) (0.166)

gr∗Et 0.120** 0.095* 0.092* 0.089** 0.107*** 0.072*
(0.059) (0.052) (0.051) (0.044) (0.023) (0.038)

qt 0.079* 0.051 -0.049* -0.045
(0.047) (0.043) (0.029) (0.033)

qt−1 0.632*** 0.603***
(0.049) (0.063)

P̂Rt+1 0.439*** 0.396***
(0.036) (0.032)

S1t -0.228*** 0.005 -0.227*** 0.005
(0.042) (0.022) (0.040) (0.020)

S2t -0.143** 0.065** -0.144*** 0.064**
(0.057) (0.029) (0.054) (0.029)

S3t -0.374*** -0.053** -0.345*** -0.030
(0.045) (0.023) (0.042) (0.020)

S4t -0.254** 0.082 -0.331*** 0.017
(0.098) (0.056) (0.091) (0.044)

Month Dummies YES YES YES YES YES YES YES YES

Year Dummies YES NO YES NO YES NO YES NO

Obs. 311 311 311 311 311 311 311 311

R2 0.510 0.680 0.561 0.849 0.738 0.711 0.743 0.872

Standard error in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
† Coefficients and standard errors have to be divided by 1(

1−β̂qt−1

) to be comparable to those of the baseline model,

where β̂qt−1 is the estimated coefficient of qt−1.
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Figure 1: Modes of transportation rates: Lakes and Canals (GRLC · · ·), JEC Railroads (GR +),
Expected Outside Option (GR∗E —), the signs at .5 denote Lakes open (L=1)
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Figure 2: Quantity (−−−) and estimated quantity business cycles (—). The signs at 0 denote Cartel
instability (PR=0); the signs at 80000 denote Lakes open (L=1)
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Figure 3: Estimated quantity business cycles (bold font −−−), Number of weeks Lakes open/closed
(−−−), Rate outside transportation options (—)
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Figure 5: Estimated price-cost margin and profit (− − −), and estimated price-cost margin and profit
business cycles (—). The signs at 0 denote Cartel instability (PR=0); the signs at .5 or 1 denote Lakes
open (L=1)
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Figure 6: Normalized quantity business cycles (− − −), and estimated price-cost margin and profit
business cycles (—). The signs at 0 denote Cartel instability (PR=0); the signs at .5 denote Lakes Open
(L=1)
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Figure 7: Estimated price-cost margin booms (—) and price-cost margin recessions (−−−) by quantity
business cycle and number of firms
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A Econometrics

We specify the system of simultaneous equations to be of the following semiparametric form

qt = XL
1tα + Ω1

(
XNL

1t

)
+ U1t

grt = XL
2tβ + Ω2

(
XNL

2t

)
+ U2t,

(13)

with
XL

1t ≡
{
C1[t], [grt], gr

∗E
t , Lt

}
XL

2t ≡
{
C2[t], [qt],St

}
XNL

1t ≡
{
MNCY Et , NWCt, NWOt

}
XNL

2t ≡
{
gr∗Et , NWCt, NWOt, Et(PRt+1)

}
.

(14)

The terms C1[t] and C2[t] are in bold font and have time subscripts in square brackets as they include,

month and year dummies, the former, and only month dummies, the latter. The constant is omitted both

from XL
1t and XL

2t as it cannot be identified separately from the unknown nonparametric functions Ω1 (·)
and Ω2 (·). Also, the variable Et(PRt+1) being unobserved at time t, we replace it with its predicted

value P̂Rt+1, which is a one period lead of the estimated ARMA(1, 1) latent specification

PRt = φPRt−1 + XL
3,t−1γ + U3t

U3t = ρVt−1 + Vt (15)

where,

XL
3,t−1 ≡ {C,ERt−1, ELt−1, Lt−1, Nt−1, NWCt−1, NWOt−1} .

The estimated value of Equation (15) is

P̂Rt = φ̂PRt−1 + XL
3,t−1γ̂ + ρ̂V̂t−1, (16)

and its one-period lead is

P̂Rt+1 = φ̂PRt + XL
3tγ̂ + ρ̂V̂t. (17)

The system of equations (13) is on the whole identified via exogenous demand shifters (a Lakes open/closed

dummy, year dummies that account for years of abundant/scarce crop and marginal net convenience yield

to explain spikes in demand) and cost shifters (structural dummies). However, given that Et(PRt+1)

is a term of XNL
2t we need to investigate the identification, further. Prior to providing any additional

discussion on this matter, we recall that the unobserved Et(PRt+1) is replaced by the predicted value

P̂Rt+1. With such a formulation we hope that a one-period lead of the estimated PR series, P̂R, displays

less correlation with the U2 series, than does the original PR series. In addition, the series is expected

to exhibit no correlation or, if any, a minimal correlation, with the demand error term, U1. With this in

mind, we add P̂Rt+1 to the cost shifters and better identify the grain rate endogenous variable, gr.

We now generalize the above notation and denote with G the total number of equations, and with g

one of these equations. Part of the notation that follows is inherited from Wooldridge (2002). For each

equation g we assume that we have a set of instruments that satisfies the following condition

E (Ug|Zg) = 0, g = 1, · · · , G. (18)
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We rewrite the system of simultaneous equations (13) in compact form as

yt ≡

(
qt

grt

)
, XL

t ≡

(
XL

1t 0

0 XL
2t

)
, θ ≡

(
α

β

)
, Ut ≡

(
U1t

U2t

)
,

Ω
(
XNL
t

)
≡

(
Ω1

(
XNL

1t

)
Ω2

(
XNL

2t

) ) . (19)

So that we have

yt = XL
t θ + Ω

(
XNL
t

)
+ Ut. (20)

We employ the Robinson (1988) difference estimator to estimate Eq. (20). We take the expectation of

Eq. (20) conditional on XNL
t and subtract it from equation (20) to get[
yt −E

(
yt|XNL

t

)]
=
[
XL
t −E

(
XL
t |XNL

t

)]
θ + Ut, (21)

where we made use of the assumption E(Ut|XNL
t ) = 0.

Next, defining ỹt ≡
[
yt −E

(
yt|XNL

t

)]
and X̃L

t ≡
[
XL
t −E

(
XL
t |XNL

t

)]
, Eq. (21) simplifies to

ỹt = X̃L
t θ + Ut. (22)

Given the matrix XL
t includes endogenous variables, one needs to deal with the endogeneity in a semi-

parametric framework. As previously mentioned, we postulate that we have a set of instruments that

satisfy condition (18). We write those instruments in compact form as

Zt ≡

(
Z1t 0

0 Z2t

)
, (23)

with,

Z1t ≡
{
C,C1[t], gr

∗E
t , Lt, P̂Rt+1,St

}
Z2t ≡

{
C,C2[t],St, Lt,MNCY Et

}
.

(24)

Next, we adjust the Robinson (1988) difference estimator to deal with the endogeneity. So, we pre-

multiply both sides of equation (22) by the transpose of the matrix of instruments, Zt, and get

Z′tỹt = Z′tX̃
L
t θ + Z′tUt. (25)

Since both E
(
yt|XNL

t

)
and E

(
Xf t

L|XNL
t

)
are unknown, ỹt and X̃L

t are themselves unknown. We

make use of our data and utilize the Hayfield and Racine (2008) np package developed in R to esti-

mate E
(
yt|XNL

t

)
and E

(
XL
t |XNL

t

)
nonparametrically.17 In this way we recover the estimated values

Ê
(
yt|XNL

t

)
and Ê

(
XL
t |XNL

t

)
. Now, if we define ˆ̃yt ≡

[
yt − Ê

(
yt|XNL

t

)]
and ˆ̃X

L

t ≡
[
XL
t − Ê

(
XL
t |XNL

t

)]
,

Equation (25) reduces to

Z′t ˆ̃yt = Z′t
ˆ̃X
L

t θ + Z′tUt. (26)

17For the continuous variables (q, q−1, gr, gr∗), we employ the Hurvich, Simonoff, and Tsai (1998) Kullback-Leibler
Cross-Validation method, implemented in the function npregbw, to select the bandwidth for the multivariate Kernel
regression npreg. For the dichotomous variables (month, year, Lakes and structural dummies), we utilize the Klein and
Spady (1993) Single Index Model methodology, built in the function npindexbw, to pick the bandwidth for the regression
npindex. The covariates retained for the demand and pricing equations are, respectively, XNL

1 and XNL
2 . Refer to Li and

Racine (2007) for details on the nonparametric regression theory.
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We now employ a GMM estimator with an optimal weighting matrix and estimate the linear parameters

θ. This requires, first to estimate Eq. (26) by a 2SLS estimator

θ̂2SLS =
[

ˆ̃X′Z (Z′Z)
−1

Z′ ˆ̃X
]−1 ˆ̃X′Z (Z′Z)

−1
Z′ ˆ̃y, (27)

where the bold letters without time subscript are stacked matrices, e.g. Z is

Z ≡


Z1

· · ·
Zt

· · ·
ZT

 . (28)

We use the estimated parameters θ̂2SLS to compute the residuals, as these are necessary for the con-

struction of the optimal weighting matrix estimator

Ŵ =

(
T∑
t=1

Z′tût,2SLSû′t,2SLSZt

)−1
. (29)

The GMM estimator is

θ̂GMM =
[

ˆ̃X′ZŴZ′ ˆ̃X
]−1 ˆ̃X

′
ZŴZ′ ˆ̃y, (30)

and the estimator for its asymptotic variance-covariance is

ˆAvar
(
θ̂GMM

)
=

 ˆ̃X′Z

(
T∑
t=1

Z′tût,GMM û′t,GMMZt

)−1
Z′ ˆ̃X

−1 . (31)

At last, the nonlinear component Ω̂ is easily recovered as the difference

Ω̂
(
XNL
t

)
= Ê

(
yt|XNL

t

)
− Ê

(
XL
t |XNL

t

)
θ̂GMM . (32)
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