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Abstract

This paper investigates the hedging effectiveness of ardimanoving window OLS hedging model, formed
using wavelet decomposed time-series. The wavelet transfapplied to calculate the appropriate dynamic
minimum-variance hedge ratio for various hedging horizfmrsa number of assets. The effectiveness of the
dynamic multiscale hedging strategy is then tested, bothnd out-of-sample, using standard variance reduction
and expanded to include a downside risk metric, the timezbardependent Value-at-Risk. Measured using
variance reduction, the effectiveness converges to ormmgél scales, while a measure of VaR reduction indicates
a portion of residual risk remains at all scales. Analysishef hedge portfolio distributions indicate that this

unhedged tail risk is related to excess portfolio kurtosisnd at all scales.

1. Introduction

The use of derivative securities, in particular futurestrmts, allows both producers and consumers to reduce
potential future price risk associated with a given spottfims Much of the large body of literature written on the
issue of futures hedging have focussed either on the erapa#timation of the optimal hedge ratio (OHR) or the
derivation of the OHR using different objective functiomMdany approaches to obtain optimal hedge ratios have
been suggested, both static and dynamic. Static hedgihgitpes include minimum variance, mean-variance,

mean-Gini and generalized semi-variance. Dynamic hedgesrhave also been proposed, applying techniques
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such as GARCH or moving-window estimation to capture chamg¢he relationship between assetdowever,

few empirical studies consider the effect of the hedgindgzoor on the optimal hedge ratio, even though various
hedging participants may have very different hedging fwriz Due to the sample reduction problem associated
with matching the frequency of data with the hedging horjzamalysis of dynamic hedging at different time-
horizons has been little studied. In this paper, we overctmgedifficulty by combining wavelet multiscale
analysis with a moving window OLS, to calculate the time aoales dependent covariance structure and hence
determine the dynamic time horizon dependent hedge ratie. th&nh build further upon previous studies, by
measuring the effectiveness at each time-horizon usinfue-a-risk (VaR) measure, to assess the tail risk of the
hedge portfolio at each scale. Finally, to try to understagttier the changes in effectiveness at different scales,
we expand upon previous studies and explore the distrimaitioharacteristics of portfolio returns at different
horizons by determining the scale dependent moments iimgjisttewness and kurtosis. A number of implications
for hedgers emerge from our findings. First, hedgers withngdo time horizon benefit from lower levels of
risk, higher effectiveness and lower transaction costeofed static multiscale hedge ratios, found in previous
studies, result in a smoothing of the data, which obscuredaiye dynamical changes that occur over time. A
dynamic multiscale method is shown to be more appropriafgueing features not apparent using a static method.
Finally, while previous studies have demonstrated litdelde portfolio risk at longer scales, we find using a VaR
effectiveness measure, that excess unhedged tail riskimemahis highlights the weakness of the minimum
variance hedge, even at long time-horizons.

The risk of financial assets is uniquely shaped by the timébo studied. In the context of hedging, a limited
number of studies, including Ederington (1979); Hill andhv&eeweis (1982); Malliaris and Urrutia (1991); Benet
(1992); Geppert (1995), have demonstrated an increasalgirigeeffectiveness for longer horizons, by matching
the frequency of the data with the hedging horizon. Howematof-sample, Malliaris and Urrutia (1991); Benet
(1992) found a lack of stability in the hedging effectivesiésr longer horizons. More recently, Chetal. (2004)
demonstrated, using subsampled data, that both the hedgend effectiveness tend to increase with the length of
time horizor? The effectiveness of scaled short-term horizon data agpdiéonger-term horizons was studied by
Cotter and Hanly (2009), where scaled hedges were showtidergood hedging effectiveness across a number

of assets. In all of these studies, the returns were caémlilay sub-sampling over different horizons resulting

IHere, we follow the Cheet al. (2003) breakdown between static and dynamic hedging tecbsidThese alternative methodologies are
reviewed here and references therein.

2|n this article, we define subsampled data as returns caéclifabm price data of a longer horizon, found by subsamplimgatiginal
asset prices. For example, one can create monthly returnsdadgnprices by subsampling the data every twenty days aralieding the
return. However, this has the obvious effect of reducingstimaple size available, something we attempt to overcome intthdy by using a
wavelet approach.



in reduced quantities of data for longer-term horizons. faeo to overcome the sample reduction difficulties
associated with reduced data quantity, we apply waveletisoaling techniques which allow us to compute the
hedge ratio based on all data available at each Scale.

Using wavelet multiscale analysis, we compute the hedde aad study hedging effectiveness at different
time horizons. Wavelets have previously been applied tori@tyaof economic and financial time series to de-
compose the data into orthogonal time-scale componentsrging granularitie. Recently, wavelet multiscaling
techniques have been applied to test the dependence ottinesinedge ratio on the underlying time-scale struc-
ture of the data. By calculating the wavelet variance andgamce at different scales for S&P 500 index and
futures data, In and Kim (2006b) showed that there is a unigdge ratio associated with each scale, which
converges to one for longer scales. Further, using the Evehriance reduction as a measure of hedging ef-
fectiveness, they demonstrated that the hedging effeetssalso converges to one. Similar results were found
between the Australian All Ordinaries Index and the Sydnetufes Exchange Share Price Index, (In and Kim,
2006a).

A comparison of wavelet multiscale hedge ratios to other@gghes has also been addressed, (Lien and
Shrestha, 2007). Comparison to the error-correction hedtie revealed an outperformance for short time-
horizons, while for long time-horizons, the optimal muttige wavelet ratio was found to dominate, with similar
results found both in- and out-of-sample. The optimal hedgi®s for a portfolio of commodities was found,
Fernandez (2008), using copulas to measure the assetgetependency and wavelets to account for hedging
horizon. Improved hedging effectiveness was found for twfplio of commodities compared to a single posi-
tion, with additional benefits at longer scales. While theswipus studies detailed the effects of time-horizon on
the hedge ratio, the relationship between the cash andefutarassumed to be static. Assuming a static hedge
ratio may restrict the introduction of newly available infaation which may impact the covariance structure and,
hence, the hedge ratio. In order to incorporate the charstiteime varying covariance, we expand upon these
previous studies through the development of a dynamic sualle hedge ratio.

Itis well documented in the literature that the relatiopghétween asset returns is time varying. In this article,

we follow the methods of Malliaris and Urrutia (1991), Hareand Shen (2003) and Cotter and Hanly (2006)

31t should be noted that these data points are based uponrntteessanple, which may result in a reduction of the precision afdoacales.

4Early applications included the study of foreign excharatadising waveform dictionaries, (Ramsey and Zhang, 1985 Jlécomposition
of economic relationships, (Ramsey and Lampart, 1998), srcplioperties of volatility, (Gencagt al, 2001b) and the relationship between
systematic risk and return at different scales, (Geratal., 2003). More recently, the relationship between stockrnstand inflation, (Kim
and In, 2005), the co-skewness and co-kurtosis betweetiexjand the market at various time-scales, (Galagedera ahdria2008), the
scale dependence of hedge fund market risk and correla@aml¢net al, 2008) and international diversification benefits at ddfertime
horizons, (Rua and Nunes, 2009) have been studied usingayeet transform.



and use a rolling window OLS, in order to capture changeseéncthvariance structure over time. This method,
combined with wavelet multiscaling, allows us to measuegtidging effectiveness both in- and out-of-sample for
different time-horizons, providing a simultaneous tinoale measurement of multiscale hedging effectivefess.
Further, the wavelet multiscaling technique used is nojesmiho downsampling, (or reduction of the number of
coefficients at longer scales), thus allowing us to aligriibdge ratio and effectiveness features at different scales
for dynamic comparison.

The performance of the hedging effectiveness at diffeiimgthorizons is measured using two different meth-
ods, variance and value-at-risk reduction. The variancéaodealone has been applied in previous wavelet mul-
tiscale hedge ratio studies and measures the reductiondgehgortfolio variance, compared to the unhedged.
However, variance assigns an equal weight to positive agdtive returns, while a measure that differentiates
between positive and negative returns may capture the hsggeferences better. In order to study the effect of
hedging on the negative tail returns of the hedge portfali® also use value-at-risk (VaR) reduction, (see Cotter
and Hanly (2006); Harris and Shen (2006); Gaal. (2009))® When returns are normally distributed with mean
zero, the VaR is simply a multiple of the standard deviatibtihe portfolio. However, for non-normal returns, the
VaR takes into account the higher moments of the distribugiod so, improves upon the variance. The second
issue addressed in this article is the measurement of thetiefiness, at different scales, using both a standard
variance metric and a VaR measure to explore scale depetadaisks’

While a number of studies have shown a reduction in portfadinance at longer time-horizons, the effect
of time scale on the skewness and kurtosis, and hence théskadf a hedge portfolio, has not been examined.
The use of variance as a measure of risk is only correct whessiors have a quadratic utility and returns are
elliptically distributed, (Harris and Shen, 2006). Whenstheonditions do not hold, variance cannot characterize
fully the risks associated with higher moments of the ret@rrPreviously, Harris and Shen (2006) found the
skewness of the minimum-variance hedge portfolio to bkelithanged, while the portfolio kurtosis tended to
increase compared to the unhedged asset, using origimalrdfirns data. Thus, the final issue addressed in this
article is the effect of time-scale on the portfolio skewsiaad kurtosis and hence the risk of the hedged futures

portfolio.

SAlternative approaches, not pursued here, to capturertievarying covariance structure include GARCH models, (Geat, 2003).

6Alternatively, we could examine hedging for positive taitus but, for conciseness, we illustrate the use of VaR asrformance
evaluation method for a single side of the distribution

"The semivariance was also tested as a measure of hedgingvefiess at each scale. However, both in- and out-of-sameleftactive-
ness was found to be very similar to that of the variance mea$tese results are available on request.

8See Christie-David and Chaudhry (2001) where they demdastine importance of skewness and kurtosis in explaining ¢hern-
generating process of futures.



This paper is organized as follows. In Section 2, we desdhibapplication of wavelets to decompose returns
into component scales and then describe the optimal hedigearad hedging effectiveness measures. Data and

empirical results are described in Section 3, while somelcoling remarks are given in Section 4.

2 Methodology

2.1 Wavelet Multiscale Analysis

We provide a short synopsis of wavelet multiscale analyses/ant to this study, (for more comprehensive detail,
see Burrugt al. (1997); Percival and Walden (2000)). The discrete wavedeisform provides an efficient means
of studying multiresolution properties, as it can be usedg¢ocompose a signal into different time horizons or
frequency components. There are two basic wavelet furgtitie father wavelet and mother wavelep, which
can be scaled and translated to form a basis for the Hilbages? () of square integrable functions. The father

and mother wavelets are formally defined by the functions:

bix () =272 (2t — k) 1)

P (t) = 2759 (27t — k) )

wherej = 1, ... J is the scaling parameter in&level decomposition and is a translation parameter. The long
scale trend of the time series is captured by the father wgwshich integrates ta, while the mother wavelet,
which integrates t0, describes fluctuations from the trend. The wavelet reptasien of a discrete signdl(¢) in

L?(R) is given by:

&) = D suxbuw() + > dixdsrt) +...+ D> disdri(t) 3)
k P Kk

wherek ranges fronl to the number of coefficients in the specified level anid the number of multiresolution

levels, (scales). Smooth and detail component coefficiepisandd s i, are found by integrating over timet,

s1p = / b f (1)t ()
du= [t G=1..0) )



Each coefficient sets;,d;,d;_1,...d; is called acrystal where coefficients from levegl = 1. .. J are associ-

ated with scalé2’ 1, 27].

211 MODWT

In order to overcome some of the difficulties associated thidDWT, in this paper we adopt the maximum overlap
discrete wavelet transform (MODWT), a highly redundantdinélter that transforms a series into coefficients
related to variations over a set of scales, (Percival andl®¥gal2000; Gencagt al, 2001a). The MODWT has
several advantages over the DWT, allowing alignment of ve\valaling and detail coefficients with the original
time-series. The MODWT can also handle any sample size N,eslsethe DWT restricts the sample size to a
multiple of 27. Here, we apply the MODWT as it allows us to explore any samigks align the coefficients with
the original data and calculate the wavelet variance andr@wce effectively at different scales.

Like the DWT, the MOWDT produces a set of time-dependent waaate scaling coefficients with basis
vectors associated with a locationd scale; = [27~1, 27] for each decomposition levgl=1,...,.J,. How-
ever, the MODWT is nonorthogonal and has a high level of rednng retaining downsampled values at each
level of the decomposition that would be discarded by the DMPEcomposing a signal using the MODWT fo
levels theoretically involves the application.fpairs of filters. The filtering operation at thi&" level consists of

applying a rescaled father wavelet to yield a sed@fil coefficients

L1
Dj; = Z i fii (6)

=0

and a rescaled mother wavelet to yield a setaaling coefficients

Sie=Y_ bjufi- (7
=0
for all timest = ..., —1,0,1, ..., wheref is the function to be decomposed, (Percival and Walden, 200e
rescaled mother&j’l = % and father,ibj,t = % wavelets for thej*” level are a set of scale-dependent

localized differencing and averaging operators and cargarded as rescaled versions of the originals. jthe
level equivalent filter coefficients have a width = (27 — 1)(L — 1) + 1, whereL is the width of thej = 1 base

filter. In practice, the filters foj > 1 are not explicitly constructed because the detail and regaoefficients

9Downsampling or decimation of the wavelet coefficients retialf of the number of coefficients that were retained at tkeipus scale
and is applied in the Discrete Wavelet Transform. By retgraii coefficients at each scale, the MODWT has 'redundantffiobents or
coefficients not necessary to recreate the original sigrias, however, results in significant benefits for multisaalalysis, described above.



can be calculated, using an algorithm that involvesjtke 1 filters operating recurrently on thé" level scaling

coefficients, to generate thet 1 level scaling and detail coefficients, (Percival and Wa]@&a00).

2.1.2 Wavelet Moments and Covariance

The wavelet varianc® ariance(7;) at scalej is defined as the expected valuelfzj_’t if we consider only the
non-boundary coefficient§. An unbiasedestimator of the wavelet variance for functigtt) at scalej is formed

by removing all coefficients that are affected by boundamnditions and given by:

Variances(7;) Z D (8)
M; t=L;—1

whereM; = N — L; + 1 is the number of non-boundary coefficients at jte level associated with the time
horizonr, Percival and Walden (2000). The wavelet variance decoemptige variance of a process on a scale-
by-scale basis (at increasingly higher resolutions of thead) and allows us to explore how a signal behaves at
different time horizons.

Similarly, the wavelet skewness and kurtosis can be defimed scale-by-scale basis. Assuming that the

wavelet coefficientd); , at each scale have zero mean, the unbiased skewness at&adl goven by

SNt DY,
Skewnessy(1;) = M, ct=1 3_13 3, o
o(Dj)
while the unbiased kurtosis at each scale is
YD
Kurtosisg(1;) = M t= LJ 14 10
of (Dj,t)

with 0%(7;) = Variance;(7;) the standard deviation of the wavelet coefficients at sgatgimilarly, formulas
for the co-skewness and co-kurtosis at different scales haen derived, (Galagedera and Maharaj, 2008).

In our analysis, we use (9) and (10), to examine the higher emtsof the hedge portfolio, in order to gain
insight into the distributional effects of scaling. As delsed in Harris and Shen (2006), the skewness and kurtosis
of the minimum variance hedge portfolio can be larger tha ¢ the individual assets, creating a need for a
measure of risk that captures these higher moments. Hera)sseaddress the question of how time horizon

effects the higher moments of the hedge portfolio and hahedail risk of the hedge portfolio.

10The MODWT treats the time-series as if it were periodic usirigetdar boundary conditions”. There afe; wavelet and scaling coeffi-
cients that are influenced by the extension, which are eddnr as the boundary coefficients.



The wavelet covariance between functigii$) andg(t) is defined, similar to (8), to be the covariance of the

wavelet coefficients at a given scale. Tinebiasedestimator of wavelet covariance at tjf& scale is given by
N—
Covariancefq(T;) Z t)Dg(t (12)

where all wavelet coefficients affected by the boundary aneoved and/; = N — L; + 1, (see Percival and

Walden (2000) for a complete treatment of wavelet moments).

2.2 Minimum Variance Hedge

In this paper, we use the wavelet transform so as to calctiiateninimum variance hedge ratio at different time
horizons. For an individual holding a spot position in soreset, hedging involves taking an opposite position in

the futures market. Assuming a long position in the spot eiatke return on a hedge portfolio is given by
re =8¢ — hfy (12)

wheref; ands, are the log returns of the futures and spot markets attiamel is the hedge ratio. The risk of a

portfolio, commonly given as the variance in returns is

Var(ry) = Var(sg —hft)

= Var(sy) + h*Var(f,) — 2hCouv(sy, fr) (13)

The static minimum variance hedge ratio is the valué tfat minimizes (13), and given by

_ Coviance(s, f)

~ Variance(f) a4

whereCovariance(sf) is the covariance between the spot and futures returnd’anéunce( f) the variance of
the futures returns. However, the time variation of thearee-covariance matrix is a well known feature of many

financial asset returns leading to an optimal time-depertugage ratioh, (Kroner and Sultan, 1993),

he = Variance(f;)

(15)



In order to account for this time-variation in the variaram®ariance matrix, a rolling window OLS approach is
used, with all observations given an equal weighting. Thisraach combines well with the wavelet transform,
allowing a dynamic scale dependent analysis of the hedge réb calculate the hedge ratio at each scale, we
simply replace the variance and covariance in (15) by thatdousing the wavelet coefficients at each scale for

each moving window, (8) and (11).

2.3 Hedging Effectiveness

We examine both in-sample and out-of-sample hedging pegoce using two different performance metrics,
variance reduction, which incorporates both upside andhdme risk, and value-at-risk reduction which captures
risk for one side of the distribution in our case.

Variance reduction measures the percentage reductioreimatiance of a hedge portfolio compared to the

unhedged spot position and is given by

Variance(ry)

HEvariance = (16)

 Variance(s;)

whereVariance(r;) andVariance(s;) are variance of the returns for the hedge portfolio and sxgectively.
To study the effect of hedging on negative tail returns andsuee risks posed by higher moments of portfolio
returns, we use Value-at-Risk (VaR), which estimates themmam portfolio expected loss for a given confidence

level over a given time period, (Jorion (2006); Harris an@ts(R006)). The VaR at confidence leveis

VaR, = qq (17)

wheregq, is the relevant quantile of the loss distribution. The dffemess from the point of view of Value-at-Risk

reduction is then measured by

(18)

with VaR, () andVaR,(s:) the value-at-risk of the hedge portfolio and spot, at configdevelo.



3 Empirical Analysis

3.1 Data

For the empirical analysis, we choose examples of three elssses. We dynamically hedge long spot exposures
in West Texas Intermediate (WTI) Crude Oil, the S&B0 Equity Index and th& BP/U S D currency exchange
rate. These assets were chosen to represent a diverse gghlgfliguid cash and futures markets, where a long
returns history for both the spot and futures markets waiadba.'' Each long spot position is hedged by taking
a short position in the corresponding futures contract. dhpirical results are found using daily returns data for

the period)2 Jan1986 to 31 Decembef009:

1. For WTI Crude Oil, the corresponding futures contract & ttew York Mercantile Exchange (NYMEX)

contract, giving a total 06259 trading days.

2. The S&P500 data consists 06238 daily traded returns, with the futures contract traded en@hicago

Mercantile Exchange.

3. The British Pound to US Dollar exchange rate, with a tota261 daily returns and the futures contract is

traded on the Chicago Mercantile Exchange.

The timeframe examined was chosen as it covered a large muphlkifferent adverse events for each asset,
allowing a detailed study of the effects of scaling on hedgiffectiveness, during both normal and turbulent
markets. Data was obtained from Datastream, using cloginggfor the spot index and the corresponding daily
settlement price for the futures contract. Each futuresrachstudied is nearest-to-maturity and rolled over to the
next contract on the first day of the contract month.

As outlined in Section 2.1.1 we decompose both the cash andeureturns by employing the MODWT.
For the present study, we selected the least asymmetric \{la4glet, (known as the Symmlet, (Burraesal,
1997)), chosen as it exhibits near symmetry about the filidpaint and has the property of aligning the wavelet
coefficients accurately with the unfiltered time sefietA filters are defined in even widths and the optimal filter
width is dependent on the characteristics of the signal adength of the data series. The filter width chosen
for this study was the LA8, (whei@refers to the width of the scaling function). The length & tblling window

used in the analysis €000 days® and we chose scalg corresponding t82 — 64 day dynamics, as the largest

1additional assets, (eg. Gold), were also studied and thétesfound to be consistent. These are not presented foismTess.

12The Daubauchie®4 and the CoifleC'10 wavelets were also studied but resulted in little qualitatifference to the analysis.

B3pifferent window sizes were also studied, with longer wiwddfound to smooth changes in the hedge ratio, while shortedews
resulted in more volatile ratios. However, the main resultsitbin this paper were qualitatively the same regardlesseofvihdow studied.

10



decomposition level, to strike a balance between the maxiszale and the number of boundary coefficients. As
described in Section 2.1, the scales studied can be intecpas follows: Scalé — 1 — 2 day, Scale — 2 — 4
day, Scal88 — 4 — 8 day, Scalet — 8 — 16 day, Scalé& — 16 — 32 day and Scalé — 32 — 64 day dynamics.
Summary statistics, including the mean, standard deviaskewness, and kurtosis for each of the assets at
each scale can be found in Table 1. Starting with the origietairns data, we find the common stylized features
of financial returns, namely, excess kurtosis and a lack ohabity for both spot and futures. Turning to the scale
statistics, as described in Section 2.1, the mother wairgbgrates to zero, and so the mean value for the wavelet
decomposed data at each scale is zero. As found in previodest the standard deviation decreases at lower
scales, with total variance conserved. The skewness iglftaume predominantly negative across assets and scales,
while excess kurtosis is found at all scales. However, thel lef kurtosis is found to decrease significantly at long
scales. The hypothesis of normality for the returns coeffits associated with each scale is found, however, to be

rejected by the Jacque-Bera statistic for all assets.

[Table 1 about here.]

3.2 Dynamic Hedging With Subsampled Data

In this paper, we use wavelet multiscaling techniques tdysthe dynamic scale dependent hedge ratio, in order
to overcome the sample reduction problems associated whdsampling data. To demonstrate the sub-sampling
problems in the case of Crude Oil, we first study the changéseioptimal dynamic hedge ratio (and associated
hedging effectiveness) for a number of sub-sampled timreztwas* This is achieved by calculating asset returns
from price data sampled eveBy6 and12 days, reducing the quantities of data available for ansly&his ignores
any information contained in the unused data, a problemishatercome using wavelet multiscaling. To allow
for comparison with the rolling window wavelet techniquatel, we estimate the returns in a rolling window of
200 days, calculate the hedge ratio and then move forward oreeiniod, (dropping the first observatiof).

The results, averaged over each moving window for the tiorézbns described are shown in Table 2. As
expected, an increase in the hedge ratio is found at longper-tiorizons, with a corresponding increase in the
hedging effectiveness. The effects on skewness and ksigosimore difficult to determine, with differing trends
across scales, although the kurtosis usih@ and 12 day returns is lower than for the original daily returns.

However, as previously shown by Harris and Shen (2006) fissshedged currency portfolios, the kurtosis of the

14Results were found to be consistent for the other assetiedthdt are not reported for brevity.
15Longer windows reduced the available data further and winnigiir a detailed rolling window analysis.
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hedge portfolio was found to be greater than that of the spalf returns horizons.

The difficulties of using sub-sampled data can be seen meselglin Figure 1, where in-sample hedging
effectiveness, measured using variance reduction, fdr gae-window at each hedging horizon is shown. The
dynamic nature of hedging effectiveness is clearly visibligh quite dramatic variations using the original data.
The increased effectiveness at longer horizons is vishmjever the reduction in sample data makes it difficult
to match and compare features for different scales at amngivint. Further, the reduced quantities of available
data prevents analysis at scales much longer tRatays as the statistical quality of the data deteriorateskyi
while also preventing a sensible out-of-sample analysis.affempt to overcome these difficulties, we apply

wavelet decomposition.
[Table 2 about here.]

[Figure 1 about here.]

3.3 Dynamic Scale Dependent Hedging

In order to investigate the effects of both time and scalédherhedge ratio and hence the hedging effectiveness, we
calculate the optimal dynamic hedge ratio using a movingdew technique. This was implemented as follows:
The wavelet coefficients for both spot and futures returnsewalculated, up to the sixth scale, using a moving
window of 1000 days, allowing the variance, (8), covariance, (11), andimum variance hedge ratio, (15), to
be found for each scale in each window. The in-sample hedgffegtiveness at each scale was determined using
the wavelet coefficients from the firs000 days. The out-of-sample effectiveness at each scale wasuneeh
by applying the in-sample hedge ratio to the wavelet coefifiis calculated over the nediO0 days, (following
the analysis of Benet (1992); Chehal. (2004) using subsampled data and Lien and Shrestha (208&afdez
(2008) using wavelet filtered data). Thereafter, the olzemw atT" + 1 is incorporated into the data and the first
observation excluded, with the above process repeated.

To illustrate, the dynamic hedge ratio for Crude Oil is shp®igure 2, with the dynamic minimum variance
hedge ratio for the original data shown in the upper plotjevtiiose found at wavelet scales3 and5 are shown
in the lower plotst® We find that the hedge ratio tends to one as we move to longerdaales. However, we
find that the ratio is far from static, in particular at shame-scales. The dynamics of the ratio at sdalél — 2

days), has a trend similar to that of the original data, altfiothe value of the ratio is reduced somewhat. By

18For brevity, the plots of the moving window analysis are naiveh for the other assets. However, summary statistics arershofable
4 and Table 5, while the plots are available from the authpouequest.
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scale5, the ratio has converged to one; however there is evidenserok spikes in the data, which may be a
result of considerable basis risk at that pdihThe less dynamic nature of the hedge ratio at longer scalakiwo
have a major impact on the level of transaction costs inebfee hedgers with a long term horizon. For a hedger
with a horizon ofl6 — 32 days and above (scaleand above), the convergence of the hedge ratio to one means
a consistent hedge, reducing the considerable transamiisa associated with the changes in the hedge ratio at

shorter horizons.

[Figure 2 about here.]

The hedging effectiveness, measured using variance tiedu¢l6), for each moving window is shown in
Figure 4, with both the in- and out-of-sample effectivermglaid for comparative purposes. There are a number
of interesting points to note here. First, the in-sample amidof-sample effectiveness tend to be very close at
all scales, indicating favourable performance of the dyinanultiscale hedging. This is in contrast to the results
found by Lien and Shrestha (2007), where the out-of-samgtigiing effectiveness for Crude Oil was shown to
improve relative to the in-sample at longer scales, onhafsingle window. Second, moving to longer time scales,
the variance reduction effectiveness (both in- and owaofiple) increases significantly and by scale38, 64
days), the effectiveness has, on average converged tosemelgble 3). However, it must be noted that there occurs
a number of singularities where the hedging effectivenegssiconsiderably at long scales. Singularities such as
these were not withessed in previous multiscale hedgirdiestuas they examined the multiscaled properties of the
entire dataset, effectively smoothly out these eventsdndring the dynamic nature of variance and covariance.
These large drops in effectiveness occur at days with laagesisk, demonstrating that even with a long hedging

horizon, a hedger may be subject to basis risk.

[Figure 3 about here.]

We now consider the effect of the minimum-variance hedge mat the95% value-at-risk of the hedge port-
folio in Figure 4. Similar to the analysis for variance retioig, we find that in- and out-of-sample effectiveness
track each other closely. Also, the hedging effectivenessfiwund to increase at longer scales. However, at scale
5 (16 — 32 days), the average VaR hedging effectiveness 88&6, compared t®8% for the variance reduction
measure, resulting from residual unhedged tail risk. Im, facross all scales, VaR effectiveness was found to be

weaker compared to the variance reduction measure. Thiseddeffectiveness is due to the use of the minimum

17For example, or28th Januaryi 991, coinciding with the end of the First Gulf War, spot Crude f&ll in price by 6.0%, while the futures
fell by only 0.8%.
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variance hedge, which considers only the second momeneaktirns distribution. As shown in Table 1, asset
returns at all scales are non-normal, resulting from fds w@ifi the returns distributions. To determine if higher
moments are the cause of the differences between effeetiganeasures, we consider the skewness and kurtosis

of both the hedged and unhedged portfolios at each scale.

[Figure 4 about here.]

Table 3, displays summary statistics across windows andslite average hedge ratio, hedging effectiveness
(95% VaR and variance reduction), and the standard deviati@wisé&ss and kurtosis of both the unhedged asset
and the hedge portfolio at each scale for WTI Crude'®iThese results are shown both in- and out-of-sample
and, in both cases, we find that the standard deviation iseetifor both the unhedged and hedged portfolios at
longer scales. The skewness although predominantly reg&imore ambiguous across scales, with no distinct
trend found. However, considering the kurtosis, we find igrisater for the hedge portfolio across all scales,
similar to that found by Harris and Shen (2006) for daily retudata. Also, for both hedged and unhedged
portfolios, the level of kurtosis drops consistently as wavento longer scales. However, even at the longest scale
studied, we find excess kurtosis for the hedge portfoliojlerthe unhedged portfolio has zero excess kurtdsis).
This is in keeping with the findings of Harris and Shen (2006hg daily unfiltered data and this may indicate
that the excess kurtosis is behind the reduced effectigarfdbe hedge portfolio from a value at risk perspective,
(compared with the variance reduction measure). This &tdgcthat a technique that explicitly accounts for higher
moments, such as VaR minimisation, see Harris and Shen J20@6et al. (2009), may be more appropriate in

reducing the risk, even at longer time horizons.

[Table 3 about here.]

Results, averaged across each moving window, for a minimaniance hedge portfolio consisting of a long
position in the S&PH00 hedged with a short index futures position, are shown ineldbbr different time scales.
Similar to that seen for Crude Oil, both the hedge ratio amdhdging effectiveness tend to increase at longer
scales, (both in- and out-of-sample), although the VaRctifeness tends to be lower than that measured by vari-
ance reduction. Comparing the in-sample and out-of-sanegldts, we find that the dynamic minimum variance

hedge ratio has slightly better in-sample effectivenekispagh the small differences indicate the robustness of

18The averages were found across each overlaid moving windimg osly data where both in- and out-of-sample results weadatle
concurrently. This allows a direct comparison between tharia out-of-sample results.

19This is in contrast to the findings of Galagedera and Mah2&6(§), where the MODWT was used to demonstrate the excessicuofo
a portfolio of equities to be, on average, positive at sheates while consistently negative at longer scales.
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the method. Examining the skewness of the returns for bathutinedged and hedged portfolio, again no distinct
trend emerges across scales, although the hedged poisfiiond to always have negative skewness, in contrast
to the unhedged asset. Finally, analysing the level of kigtave find limited situations where the kurtosis of
the hedge portfolio is less than that of the unhedged partf¢ht scaled and6), something not withessed for
the other assets studied. For the unhedged asset we findrthei&wat scale one to be greater than that using the
unfiltered original data, indicating that this time-scalekp up some large tail risks, (or large amplitude noise),
not common to other scales. As described by Benet (1992)nihy indicate presence of a large amount of price
uncertainty in this market for short time scales, while aigler timescales more information reduces the amount
of uncertainty and hence the level of basis risk. Howevenjlar to the other assets we find kurtosis decreases
at longer scales for both the unhedged and hedged assethe AGR hedging effectiveness is orily87 at the
longest scale, this suggests that higher order moments Is@apave an influence on the tail risk of the portfolio,

(again, a VaR minimisation technique might help in redu@negliminating these risks).

[Table 4 about here.]

The final dataset examined is a British Pound/US Dollar spsitipn hedged using futures, with results
averaged over eadi®00 day moving window, shown in Table 5. As found previously furer assets, the hedging
effectiveness was similar in- and out-of-sample acrosscalles, indicating the robustness of the dynamic method
for futures hedging. Similar to previous assets, we alsotfiatithe hedge ratio and effectiveness at the first scale,
(1 — 2 day horizon), is substantially reduced compared to theratees and to the original data. This suggests
that there is more market uncertainty at short scales ortatistical sense that there is greater noise, increaseng th
difficulty of measuring the hedge ratio accurately, Ben88¢). However, by the second sca?e{(4 day horizon)
the effectiveness is greater than that found using theraigiata, and then increases to a maximun®.o8
(variance reduction) a».88 (VaR reduction) at long scales. Examining the skewness, neetffiat the unhedged
portfolio skewness turns negative at the fourth scale, evfut the hedge portfolio it remains positive for the
majority of scales. Finally, the kurtosis of the hedge pidfis found to be greater than the unhedged across all
scales, with both decreasing at larger scales. Howevar,avbe largest scale, excess kurtosis persists suggesting
that variance minimisation may not eliminate all portfalisk, (Harris and Shen, 2006). This is substantiated by

the residual portfolio tail risk found using VaR effectivess, even at long scales.

[Table 5 about here.]
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Common to all the data sets studied is a reduction in the atdndeviation of the dynamic hedge ratio at
longer scales. Compared to an agent with a short time-hgraee with a longer horizon can substantially reduce
the transaction costs involved, further enhancing the fitsnef long-horizon hedging. This results from the
convergence of dynamic hedging to an almost static hedgiiategy at long horizons producing, as demonstrated,
improved levels of risk management. VaR hedging effectgsnvas found, for all assets across scales, to be less
than that measured using variance reduction. Similarkyktirtosis was found to be larger for the hedge portfolio
at all scales, while both the hedge and unhedged kurtosreaee at longer scales. By incorporating dynamic
changes in covariance, we have demonstrated the benefitinoé aarying multiscale hedge ratio, compared to

the static multiscale approach considered in previousesud

4 Conclusions

In this study, we apply the wavelet transform to investigatatiscale properties of both the hedge ratio and effec-
tiveness of a futures hedge in a dynamic framework. We expeedous work by combining a moving-window
OLS with wavelet decomposition in order to examine the tgoale behaviour dynamically. By calculating the
minimum variance optimal hedge ratio at different wavetstiss in each window, we examine both the in- and
out-of-sample effectiveness. Studying the results overifferent moving-windows, we demonstrate the effec-
tiveness of the dynamic method through the close trackinthefin- and out-of-sample hedging effectiveness
at all scales. The scale dependence of the hedge ratio amtkiergence to one for longer time-horizons are
also shown, with a reduction in the standard deviation ofttkeége ratio at longer scales, (leading to reduced
transaction costs for a hedger with long horizon).

Hedging effectiveness is measured first by calculatingrteetibn of the unhedged portfolio variance removed
by hedging. However, the variance measures only the secamdemt of the returns distribution and may not
capture rare negative tail returns. To test the hedgingopednce in the negative tail of the returns, we also
measure the fraction of tH#¥$% Value-at-Risk of the unhedged portfolio removed by hedgkor both measures
of hedging performance, the effectiveness is found to amsmédor longer time-horizons both in- and out-of-sample,
with the variance reduction measure converging to one fasakts. However, measured using Value-at-Risk, the
effectiveness, although increasing does not convergedabthe longest horizons studied. Thus, the application
of variance minimisation to find the optimal hedge ratio, imizes the portfolio variance but ignores higher

moments, resulting in excess residual tail risk for the legglgytfolio even at long time horizons.
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To investigate further the effects of minimum variance hiegdat different scales, we examine returns distribu-
tion at all scales. The skewness of hedge portfolio retuasdittle consistency across assets or scales. However,
the kurtosis for both the hedged and unhedged portfoliosedses as the hedging horizon increases, reducing the
levels of tail risk, (as evidenced by the improvement in t®R\éffectiveness measure). The portfolio kurtosis is,
on average, greater than the unhedged asset. For both Cilualed@ritish Pound/US dollar hedges, the hedge
portfolio has excess kurtosis at all scales perhaps cattitnipto the extra tail risk found using VaR effectiveness.

The implications of our findings are as follows: Hedgers witlonger time horizon benefit from lower levels
of risk, higher effectiveness and lower transaction co3tise static multiscale hedge ratios, found in previous
studies, result in a smoothing of the data, which obscuredaiye dynamical changes that occur over time. A
dynamic multiscale method is shown to be more appropriagueing features not apparent using a static method.
Additionally, while previous studies have demonstratéitelhedge portfolio risk at longer scales, we find using
a VaR measure, that excess unhedged tail risk remains. ighidhts the weakness of the minimum variance

hedge, even at long time-horizons.
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Hedging Effectiveness (Variance Reduction), Original Data Sub-Sampled, 200 period moving window
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Figure 1:Dynamic hedging effectiveness

Dynamic variance reduction hedging effectiveness is pitesk in-sample, for a long Crude Oil position hedged
with futures, for sub-sampled returns data with variousetimerizons, calculated using a rolling window 29f0
days. The effectiveness improves at longer time horizonsielier the number of time periods available for
analysis decreases considerably impairing comparisaveeet different horizons.
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Hedge Ratio (Variance Reduction) at different scales, 1000 period moving window
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Figure 2:Crude Oil: Dynamic multiscale hedgeratio.

Notes: The dynamic minimum variance hedge ratio for Cruden@s found using a rolling window af000 days. The static hedge ratio, calculated using all avaldata is
also shown. At short scales, the dynamic hedge ratio is founery considerably over time, while at longer scales,alth there are a number of spikes, the ratio converges to
one.
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Hedging Effectiveness (Variance Reduction), Wavelet Rescaled, 1000 period moving window
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Figure 3:Crude Oil: Dynamic multiscale hedging effectiveness.
Notes: Hedging effectiveness, measured in terms of vagiaeduction, was found using a rolling window 100 days with in- and out-of-sample results overlaid. In- and

out-of-sample results are found to track closely at allegalvhile the effectiveness is found to increase at longdescwith less variation.
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VaR Hedging Effectiveness (Variance Reduction Optimisation), Wavelet Rescaled, 1000 period moving window
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Figure 4:Crude Oil: Dynamic multiscale value-at-risk hedging effectiveness
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2010

Notes: Hedging effectiveness, measured using VaR redyatias calculated using a rolling window 6600 days with in- and out-of-sample results overlaid. In- anttafu
sample results are found to track closely at all scales,enthi¢ effectiveness is found to increase at longer scalesietty, compared to the variance reduction effectiveness
measure, (Figure 3), some residual levels of risk remain av¢he longest scale studied.
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CrudeQOil

Cash Futures
Time Horizon (Days) Mean || Standard Skewness Kurtosis Jacque-Bera  Meaistandard Skewness Kurtosis Jacque-Bera
Deviation Deviation
% % % %

Original Data 0.0191 2.65 -0.79 17.42 53046 0.0191 2.58 -0.82 17.33 54283
Scale 1 1-2 0 1.88 -0.31 11.70 19860 0 1.83 -0.19 11.54 19080
Scale 2 2-4 0 1.35 -0.30 15.31 39604 0 1.33 -0.26 16.51 47674
Scale 3 4-8 0 0.97 -0.12 9.45 10880 0 0.93 -0.07 7.99 6509
Scale 4 8-16 0 0.63 0.02 6.15 2581 0 0.60 -0.05 5.17 1235
Scale 5 16-32 0 0.38 -0.05 3.67 118 0 0.37 -0.06 3.57 88
Scale 6 32-64 0 0.27 -0.07 3.62 104 0 0.27 -0.07 3.63 108

S& P 500
Cash Futures
Mean Standard Skewness Kurtosis Jacque-Bera  Meaistandard Skewness Kurtosis Jacque-Bera
Deviation Deviation
% % % %

Original Data 0.0267 1.18 -1.39 33.61 245512 0.0265 1.29 -2.62 90.52 1997876
Scale 1 1-2 0 0.86 -0.39 22.78 10188 0 0.94 -1.12 56.03 732366
Scale 2 2-4 0 0.60 -0.02 27.38 15446 0 0.68 -0.02 81.06 1583710
Scale 3 4-8 0 0.41 -0.14 9.49 10966 0 0.43 -0.38 14.05 31914
Scale 4 8-16 0 0.27 -0.27 9.57 11285 0 0.28 -0.36 14.23 32917
Scale 5 16-32 0 0.18 -0.18 7.13 4470 0 0.19 -0.25 8.09 6792
Scale 6 32-64 0 0.13 -0.28 5.39 1563 0 0.13 -0.29 5.30 1458

GBP/USD
Cash Futures
Mean Standard Skewness Kurtosis Jacque-Bera  Meaistandard Skewness Kurtosis Jacque-Bera
Deviation Deviation
% % % %

Original Data 0.00177| 0.61 -0.16 6.57 3345 0.00184 0.64 -0.32 6.60 3481
Scale 1 0 0.41 0.09 5.00 1054 0 0.45 -0.04 4.76 806
Scale 2 0 0.31 0.00 6.19 2658 0 0.33 -0.02 5.39 1493
Scale 3 0 0.23 -0.05 5.93 2247 0 0.23 -0.05 5.32 1410
Scale 4 0 0.16 -0.17 6.54 3298 0 0.16 -0.14 5.72 1952
Scale 5 0 0.11 -0.03 3.84 185 0 0.11 -0.07 3.91 220
Scale 6 0 0.08 -0.11 3.56 92 0 0.08 -0.10 3.45 62

Table 1:Descriptive statisticsfor log returns of Futuresand Spot Series at different time-scalesfor Crude Oil, S& P 500 Equity Index and GBP/USD Exchange Rate.
Notes: The mean and standard deviation of each series is8 gigercentage terms, while a skewness of zero indicatekewngss and a kurtosis of 3 indicates no excess
kurtosis. The Jacque-Bera statistic tests the null hysighbat the distribution is normal and this hypothesisjisated for all assets at all scales.
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Returns Hedge Hedging Standard Deviation Skewness Kurtosis
Horizon Data Pointg| Ratio Effectiveness Unhedged Hedged Unhedged Hedged |daetledHedged
Original Data 200 0.91 0.78 2.43 1.09 -0.28 -0.28 6.47 22.98
3 day 66 0.95 0.87 2.98 1.44 -0.32 -0.06 5.53 13.39
6 day 33 0.99 0.92 3.23 1.64 -0.32 -0.15 5.29 14.17
12 day 16 1.00 0.93 3.32 1.97 -0.30 0.22 5.07 15.41

Table 2:Hedge portfolio summary statistics, consisting of a long position in Crude Oil, hedged using futures.

Notes: The hedge ratio was calculated using data sub-sdraplarious time-horizons. Shown are the hedge ratio asdiinple variance reduction hedging effectiveness, along
with the standard deviation (in %), skewness and kurtosisdédge portfolio returns data, averaged over each avaitabling window.
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In-Sample Hedging Effectiveness Standard Deviation Skewness Kigrtos
Hedge Ratio| Variance 95% VaR HE Unhedged Hedged Unhedged Hedged Unhedged Hedged
Original Data 0.90 0.75 0.66 2.40 1.20 -0.60 -0.31 12.01 43.05
Scale 1 0.88 0.70 0.56 1.70 0.90 -0.29 -0.15 8.67 31.78
Scale 2 0.89 0.73 0.62 1.30 0.60 -0.13 -0.08 9.30 29.46
Scale 3 0.96 0.84 0.69 0.90 0.30 -0.15 -0.03 5.46 18.32
Scale 4 0.99 0.94 0.76 0.60 0.10 -0.11 0.03 3.80 9.35
Scale 5 1.00 0.98 0.88 0.30 0.00 -0.17 -0.11 3.15 7.65
Scale 6 1.00 1.00 0.94 0.30 0.00 -0.17 -0.08 2.86 6.34
Out-of-Sample Hedging Effectiveness Standard Deviation Skewness Kigrtos
Hedge Ratio| Variance 95% VaR HE Unhedged Hedged Unhedged Hedged Unhedged Hedged
Original Data 0.90 0.75 0.66 2.40 1.20 -0.60 -0.29 12.01 42.68
Scale 1 0.88 0.69 0.56 1.70 0.90 -0.29 -0.13 8.67 31.52
Scale 2 0.89 0.72 0.61 1.30 0.70 -0.13 -0.09 9.30 28.33
Scale 3 0.96 0.84 0.68 0.90 0.30 -0.15 0.00 5.46 18.27
Scale 4 0.99 0.94 0.76 0.60 0.10 -0.11 0.04 3.80 9.79
Scale 5 1.00 0.98 0.88 0.30 0.00 -0.17 -0.09 3.15 7.64
Scale 6 1.00 0.99 0.94 0.30 0.99 -0.17 -0.10 2.86 6.57

Table 3:Statistics for Crude Oil unhedged and hedged portfolios at different scales
Notes: Shown are the in- and out-of-sample hedge ratio,ihgdgfectiveness, standard deviation (in %), skewnesskanosis, averaged over each moving window for the
unhedged and minimum-variance hedged portfolio at diffeseales.




LZ

In-Sample Hedging Effectiveness Standard Deviation Skewness Kigrtos

Hedge Ratio| Variance 95% VaR HE Unhedged Hedged Unhedged Hedged Unhedged Hedged
Original Data 0.89 0.93 0.74 1.00 0.30 -0.17 -0.70 6.23 7.32
Scale 1 0.86 0.90 0.68 0.70 0.20 0.05 -0.16 6.47 5.33
Scale 2 0.90 0.95 0.78 0.50 0.10 0.00 -0.27 4.34 6.18
Scale 3 0.94 0.98 0.85 0.40 0.10 -0.06 -0.38 4.54 6.56
Scale 4 0.96 0.98 0.85 0.20 0.0 -0.03 -0.60 4.03 5.46
Scale 5 0.98 0.99 0.86 0.20 0.0 0.17 -0.75 3.76 4.28
Scale 6 0.97 0.98 0.87 0.10 0.0 -0.04 -0.03 3.38 3.17

Out-of-Sample Hedging Effectiveness Standard Deviation Skewness Kigrtos

Hedge Ratio| Variance 95% VaR HE Unhedged Hedged Unhedged Hedged Unhedged Hedged
Original Data 0.89 0.92 0.74 1.00 0.30 -0.17 -0.58 6.23 6.65
Scale 1 0.86 0.89 0.66 0.70 0.20 0.05 -0.11 6.47 4.94
Scale 2 0.90 0.94 0.76 0.50 0.10 0.00 -0.25 4.34 5.56
Scale 3 0.94 0.97 0.83 0.40 0.10 -0.06 -0.29 4.54 6.31
Scale 4 0.96 0.98 0.84 0.20 0.0 -0.03 -0.49 4.03 5.02
Scale 5 0.98 0.98 0.86 0.20 0.0 0.17 -0.64 3.76 4.16
Scale 6 0.97 0.98 0.87 0.10 0.0 -0.04 -0.03 3.38 2.97

Table 4:Statistics for S& P 500 Equity Index unhedged and hedged portfolios at different scales
Notes: Shown are the in- and out-of-sample hedge ratio,ihgdgfectiveness, standard deviation (in %), skewnesskanosis, averaged over each moving window for the
unhedged and minimum-variance hedged portfolio at diffeseales.
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In-Sample Hedging Effectiveness Standard Deviation Skewness Kigrtos

Hedge Ratio| Variance 95% VaR HE Unhedged Hedged Unhedged Hedged Unhedged Hedged
Original Data 0.70 0.57 0.37 0.50 0.30 0.00 0.10 4.83 5.97
Scale 1 0.55 0.37 0.24 0.40 0.30 0.08 0.05 3.93 4.69
Scale 2 0.79 0.69 0.45 0.30 0.10 0.03 0.03 4.17 5.67
Scale 3 0.91 0.88 0.66 0.20 0.10 0.01 0.01 3.72 5.81
Scale 4 0.96 0.96 0.81 0.10 0.0 -0.10 0.20 4.55 5.53
Scale 5 0.96 0.98 0.88 0.10 0.0 -0.12 0.45 3.48 4.53
Scale 6 0.99 0.98 0.88 0.10 0.0 -0.07 0.00 2.89 4.02

Out-of-Sample Hedging Effectiveness Standard Deviation Skewness Kigrtos

Hedge Ratio| Variance 95% VaR HE Unhedged Hedged Unhedged Hedged Unhedged Hedged
Original Data 0.70 0.56 0.37 0.50 0.30 0.00 0.09 4.83 5.98
Scale 1 0.55 0.35 0.23 0.40 0.30 0.08 0.05 3.93 4.85
Scale 2 0.79 0.69 0.45 0.30 0.10 0.03 0.02 4.17 5.65
Scale 3 0.91 0.88 0.66 0.20 0.10 0.01 0.00 3.72 5.73
Scale 4 0.96 0.96 0.80 0.10 0.0 -0.10 0.17 4.55 5.51
Scale 5 0.96 0.98 0.87 0.10 0.0 -0.12 0.43 3.48 4.48
Scale 6 0.99 0.98 0.88 0.10 0.0 -0.07 -0.03 2.89 3.97

Table 5:Statistics for GBP/EUR Exchange Rate unhedged and hedged portfolios at different scales
Notes: Shown are the in- and out-of-sample hedge ratio,ihgdgfectiveness, standard deviation (in %), skewnesskanosis, averaged over each moving window for the
unhedged and minimum-variance hedged portfolio at diffeseales.



