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Abstract 

In this paper the impact of investment horizon on asset co-skewness is examined both 

empirically and theoretically. We first detail a strong horizon-based estimation bias 

for co-skewness. An asset that has positive co-skewness at one horizon may have 

negative co-skewness for others. This phenomenon is particularly evident for small-

capitalization stocks. We then propose a theoretical model to estimate long-horizon 

co-skewness using data observed at the shortest horizon, which emphasizes the role 

of adjustment delays in the pricing of market-wide information among securities. Co-

skewness is only found to be priced in the cross-section of stock returns for a small 

range of short-horizons, calling into question the universal validity of the three-

moment model.  
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1. Introduction 

The capital asset pricing model (CAPM) of Sharpe (1964) and Lintner (1965) 

has been supplemented in various ways to better explain expected asset 
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returns. In particular, Kraus and Litzenberger (1976, 1983) and Harvey and 

Siddique (2000) have provided evidence that systematic skewness, often referred 

to as co-skewness or gamma, further characterizes the risk of an individual security 

relative to the market. The importance of accounting for co-skewness both in 

asset pricing (Smith, 2007; Kostakis et al., 2012; Lambert and Hubner, 2013; 

Kalev et al., 2019) and optimal portfolio allocation (Martellini and Ziemann, 

2010; Jondeau and Rockinger, 2012) has been documented. The existing 

literature has, however, evaluated co­ skewness over a range of arbitrarily chosen 

horizons, since the single-period model underpinning most studies considering co-

skewness is silent on the appropriate length of an investment period. Monthly or 

daily returns are widely used without particular justification.1 In this paper, 

we provide an empirical and theoretical assessment of the estimation and pricing 

role of co-skewness across multiple horizons. 

A long line of research has considered the horizon effect on the estimation of 

financial parameters.2 Initially, in a framework where investors are assumed to be 

heterogeneous with respect to their investment horizon, a number of papers 

documented that the systematic risk (beta or β) of an asset or a portfolio changes as 

the horizon is extended under the single-period Sharpe-Lintner CAPM (Cohen et al., 

1980; Hawawini, 1980b; Handa et al., 1989; Gencay et al., 2005; Perron et al., 2013; 

Bandi et al., 2021). Recently, a considerable body of work has also yielded similar 

horizon effects, for example, in risk–return relationships (Jacquier and Okou, 2014), 

correlation estimation (Conlon et al., 2018), common risk factors (Kamara et al., 2016; 

Brennan and Zhang, 2019), measuring financial connectedness ((Barunik and Kehlik, 

2018)), and in demonstrating a term structure associated with downside risk measures 

(Engle, 2011; Guidolin and Timmermann, 2006). Only limited consideration has been 

given, however, to the effect of the investment horizon on the estimation and pricing 

of co-skewness. 

Motivating our study, Fama and French (2018) provide evidence that the 

distribution of short-horizon returns is skewed and leptokurtic relative to the normal 

distribution but that these characteristics are altered for longer horizons. Holding 

mean and variance constant, prudent investors should prefer assets for which returns 

are right-skewed, relative to those that are left-skewed (Harvey and Siddique, 2000). 

Accordingly, assets with negative co-skewness to the market portfolio, with a 

resultant decrease in a portfolio’s skewness, require higher expected returns; and vice 

 
1 We have examined 47 papers investigating asset co-skewness, published in top peer-reviewed journals 

including the Journal of Finance, Journal of Financial Economics, Review of Financial Studies, and Management 

Science since 2000. 30 of these studies use monthly and 8 daily returns only, while 9 consider returns measured 

using two or more horizons. For example, Conrad et al. (2013) test the impact of ex-ante skewness on expected 

stock returns using both daily and monthly returns. Langlois (2020) empirically investigate the respective roles of 

systematic and idiosyncratic skewness in explaining expected stock returns using daily and monthly returns. 
2 The ‘horizon effect’ has, inter alia, been referred to in the literature as: the intervaling effect, the frequency 

problem, the investment horizon problem, and the holding period problem, amongst other. 
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versa. In this paper we present persuasive empirical evidence that co-skewness is 

highly sensitive to the length of the investment horizon and highlight the possibility 

that portfolios with positive co-skewness in one horizon may have negative co-

skewness when measured using another horizon. More precisely, the signs of 

estimated co-skewness parameters are prone to reversal across differing horizons for 

size-sorted portfolios, an empirical finding which has not been reported in the 

literature previously.3 

An important contribution of our study is the provision of theoretical and 

economic underpinnings for the horizon effect on estimated co-skewness. The 

literature documents two primary explanations for the horizon effect. First, 

studies focus upon the estimation bias which occurs when using different lengths 

of the investment horizon in estimating financial parameters. For example, 

research suggests that there may be delays in price adjustment for certain stocks 

to market-wide news (Lo and MacKinlay, 1990; Brennan et al., 1993; Hou 

and Moskowitz, 2005; Zhang, 2006). The heterogeneous speed among firms in 

releasing information and the adjustment of stock prices to market-wide 

information induce cross-serial correlation in security returns, which may also 

lead to autocorrelation in market index returns. Moreover, Levhari and Levy (1977) 

find that, even if returns are independent and identically distributed over time, 

the link between n-period returns and 1-period returns results in “a complex 

relation” between 1-period betas, 𝛽𝑖(1), and n-period betas, 𝛽𝑖(𝑛). Brennan 

and Zhang (2019) confirm the significant role of the multiplicative relation. 

Estimation using short horizon data may also be biased due to thin trading as 

identified by Dimson (1979) and Scholes and Williams (1977), which leads to a 

lack of synchronization between observed security prices and the market portfolio. 

Accordingly, following this literature we develop a model of the horizon effect on 

co­ skewness, theoretically indicating that co-skewness estimated at any given T-

period horizon can be expressed as a function of the daily co-skewness, the length T 

of the return horizon in days, and the security’s intertemporal cross-correlation to the 

market as well as market autocorrelations in unit returns.4 We show that our model 

produces accurate long-horizon estimates of co-skewness using only data from the 

shortest horizon. Furthermore, our model affirms that the estimation bias resulting 

from intertemporal correlations among security returns is an important source of the 

horizon effect on co-skewness. We provide evidence that the horizon effect on co-

skewness is more conspicuous when higher order serial correlations are accounted 

for. Moreover, for a given order of serial correlation, increasing or decreasing the 

 
3 While the impact of horizon on co-skewness has not previously been examined, skewness of asset returns has been 

shown to be horizon dependent (Hawawini, 1980b; Lau and Wingender, 1989) and to suffer from sampling error (Lau et 

al., 1989). 
4 In the context of this paper, intertemporal correlations refer to the range of non-contemporaneous lagging and 

leading correlations between assets and the market, including those involving quadratic terms. 
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magnitudes of the intertemporal correlation coefficients is also shown to induce 

estimation bias in co-skewness. These results help to explain our empirical findings for 

size-sorted portfolios.5 

A second possible explanation for the horizon effect is linked with a line of 

literature which documents evidence on the variations in investment horizons across 

investors and over time, from a behavioural perspective. For example, Aıt-Sahalia and 

Brandt (2001) find that the selection of optimal portfolios and the corresponding 

weights vary across investment horizons. Dierkes et al. (2010) investigate interactions 

between investment preferences and horizon, and find that investing in stocks results 

in higher utility for investors with long investment horizons. Furthermore, clientele 

with different trading frequencies may have different perceptions of risk (Andries et 

al., 2019; Hur and Singh, 2017) and heterogeneous preference for skewness (Mitton 

and Vorkink, 2007). If investors are risk-averse, prudent and temperate, literature 

suggests that firms whose returns exhibit negative co-skewness should require higher 

premia relative to those with positive co-skewness (Harvey and Siddique, 2000; 

Kostakis et al., 2012). Thus, investors who trade frequently may have higher risk-

tolerance and prefer to invest in securities with larger negative co-skewness to seek a 

higher risk premium, while longer-horizon investors may be willing to accept a low 

premium and only pursue securities with low co-skewness. 

Relating to this idea of heterogeneous investment horizons, one might expect the 

horizon to match that of an institutional investor. As argued by Benartzi and Thaler 

(1995), a one-year horizon is the most plausible choice for the investment evaluation 

horizon. In this sense, our findings may provide further evidence for the arguments of 

Dittmar (2002), Post et al. (2008) and Post and Levy (2005) against the interpretation 

of the co-skewness premium as providing support for the three-moment model. The 

estimation methods adopted by early empirical studies of the three-moment model, 

including that of Harvey and Siddique (2000), do not restrict the pricing kernel to be 

globally decreasing, or the representative investor to be globally risk averse. Post et 

al. (2008) indicate that imposing global risk aversion removes the explanatory power 

of co-skewness. Looking at horizons longer than the traditional one-month interval 

considered in the literature, we provide additional evidence that co-skewness is not 

priced in the cross-section, adding to the questions over the empirical validity of the 

three-moment model. In the context of Kamara et al. (2016), the contrasting 

importance of co-skewness at different horizons might be attributed to a clientele 

effect, whereby short-run investors are compensated for exposures to shocks to which 

 
5 Theobald and Yallup (2004) suggest that the speed of pricing adjustment for larger firms is greater than that of 

smaller counterparts. The authors establish a lead/lag relationship and demonstrate that large firms have faster 

speeds of adjustment than small firms. Their results are consistent with various other papers, such as Jegadeesh 

and Titman (1995) and Lo and MacKinlay (1990), which have established and investigated the lead/lag effects 

across size sorted portfolios and show that returns of large capitalization stocks lead those of small capitalization 

stocks. This supports our finding that larger firms have a relatively small horizon effect on co-skewness. 



 

6 
 

long-run investors are less sensitive. Furthermore, Neuhierl and Varneskov (2021) 

provide evidence that low and high-frequency state vector risk is differentially priced. 

Our theoretical model and related empirical findings also highlight that, while 

intertemporal cross-correlation and auto-correlation help to drive the horizon 

dependence of co-skewness, the horizon effect is present even without such 

characteristics. Previous theoretical work linked the horizon effect in beta to frictions, 

manifesting as intertemporal cross-correlation and auto­ correlation. Hawawini 

(1980b) proposes a model to explain the relation between estimated betas and 

intertemporal cross-correlations, suggesting that there is no horizon effect on beta 

under the independence assumption in an efficient market. Our model, however, 

shows that the length of the investment horizon plays a significant role, indicating a 

“scaling law” of co-skewness in the absence of intertemporal correlation. This 

reinforces and provides a theoretical explanation for the heterogeneity in the 

empirical validity of the three-moment model described. 

Finally, given the evidence of the horizon effect on co-skewness estimation, we 

examine the implications of this effect for higher-order asset pricing. We assess 

whether the cross-sectional variation in asset returns can be explained by exposure to 

co-skewness using the Fama and MacBeth (1973) two-step method. Specifically, we 

examine the pricing role of co-skewness across a variety of horizons. Co-skewness is 

found only to be significantly priced for horizons ranging from 2-days to one-month 

and not at longer horizons. In the context of our theoretical model indicating a scaling 

law of co-skewness, one needs to be careful in interpreting this as motivation for an 

optimal horizon for co-skewness. Instead, as documented by Fama and French (2018), 

asset returns tend to be more normally distributed when longer-horizon returns are 

considered, perhaps diminishing the potential for a co-skewness risk premium at such 

horizons. 

Our findings for the impact of the sampling horizon on co-skewness are important 

for both portfolio selection and asset pricing. As proposed earlier, investors’ 

preference for positive skewness typically leads to a desire for assets with positive co-

skewness, representing those with higher probabilities of extreme positive outcomes 

for a security relative to market re­ turns. Our results suggest that an asset which is 

selected for a portfolio based on its positive co-skewness using one investment 

horizon may have negative co-skewness at another horizon, with resultant 

implications for asset and portfolio selection (higher-order moments have been 

considered for portfolio optimization by Post and Kopa (2017), Martellini and Ziemann 

(2010), Guidolin and Timmermann (2008) and Patton (2004), for example.) Our 

empirical and theoretical findings convey a word of caution for empirical researchers 

who estimate asset co-skewness, especially for stocks with extreme firm size (largest 

or smallest). 



 

7 
 

The paper is structured as follows. Section 2 introduces the asset pricing 

implications of co-skewness from first principles and develops our model of horizon-

dependent co-skewness. Section 3 describes the data employed and presents 

empirical results relating to the estimation of co-skewness coefficients. Section 4 

presents further tests on the pricing of co-skewness factor and its relation to the 

horizon effect. Concluding remarks are given in Section 5. 

 

2. Co-skewness and Modelling Process 

The Capital Asset Pricing Model (CAPM) of Sharpe (1964) and Lintner (1965), while 

useful in explaining the relationship between financial risk and return, has not been 

found to adequately explain the cross-section of stock returns. As noted by Brennan 

and Zhang (2019), the CAPM is a single-period model, where the horizon or time 

period is not specified. 

Kraus and Litzenberger (1976) and Harvey and Siddique (2000) extend the static 

CAPM to nonlinear forms of the risk-return trade-off by considering systematic 

skewness, developing the notion that moments of returns other than variance are 

relevant to maximizing investors’ expected utility. Under this framework a risk averse 

and prudent investor will have preference for a positively skewed portfolio. An asset 

with negative systematic skewness, or co-skewness, may not be selected, as this may 

result in a more negatively skewed portfolio. The implication for asset pricing is that 

the required risk premium on a stock is higher if co-skewness is negative. Harvey and 

Siddique (2000) provide empirical evidence of an economically important co-skewness 

risk premium and show that conditional skewness helps explain the cross-section of 

stock returns. 

Early studies on the co-skewness premium, including Harvey and Siddique (2000), 

do not restrict the pricing kernel to be globally decreasing or require the 

representative investor to be globally risk averse. Imposing these restrictions, Post et 

al. (2008) show that the explanatory power of co-skewness is reduced considerably. 

Poti and Wang (2010) reconcile the empirical evidence, showing that the implied risk 

aversion coefficient must be implausible high for co­skewness to help explain stock 

returns. While Post et al. (2008) examine the impact of the return interval on the 

bounds of the gamma premium, no paper has examined the impact of horizon in detail 

or developed a model to explain any horizon disparity in co-skewness estimates. 

In this paper, we build upon the extensive literature examining the effect of 

investment horizon on beta (for example, Perron et al. (2013), Handa et al. (1989), 

Cohen et al. (1983a), Hawawini (1980b) and Scholes and Williams (1977)) and 

determine whether co-skewness presents a similar phenomena. If co-skewness is 

horizon dependent, both the non-linear pricing kernel or portfolio selection with 
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skewness may also be affected by the choice of the investment horizon. 

2.1. Estimation of Co-skewness 

We follow the approach proposed by Harvey and Siddique (2000) for the 

estimation of co­ skewness. To estimate the degree of horizon-dependent co-

skewness, we repeat the estimation procedure using returns observed at different 

horizons, and thus have several samples of co­ skewness estimates. More 

precisely, we first employ the CAPM regression using a rolling window of 15-

year excess returns for share i: 

𝑅𝑖𝑇, 𝑡 −  𝑅𝑓𝑇, 𝑡 =  𝛼𝑖𝑇, 𝑡 + 𝛽𝑖𝑇, 𝑡(𝑅𝑚𝑇, 𝑡 − 𝑅𝑓𝑇, 𝑡)  +  𝜀𝑖𝑇, 𝑡,                        

(1) 
 

to extract the residuals 𝜀𝑖𝑇, 𝑡, which are, by definition, orthogonal to the excess 

market returns. 𝑅𝑖𝑇, 𝑡, and RmT,t represent T - day asset returns and market returns, 

respectively. Therefore, these residuals are net of the covariance (beta) risk, but still 

incorporate co-skewness risk. 

Using the residuals from Equation 1, Harvey and Siddique (2000) estimate 

standardized co-skewness for share i at horizon T, namely 𝛾𝑖𝑇, 𝑡,  using a 5-year 

window up to time t as: 

 

𝛾iT,t =
𝐸[𝜖iT,t𝜖mT,t

2 ]

√𝐸[𝜖iT,t
2 ]𝐸[𝜖mT,t

2 ]
,    (2)  

 

where 𝜀𝑖𝑇, 𝑡 = [𝑅𝑖𝑇, 𝑡 − 𝑅𝑓𝑇, 𝑡] − [𝛼𝑖𝑇, 𝑡 + 𝛽𝑖𝑇, 𝑡(𝑅𝑚𝑇, 𝑡 − 𝑅𝑓𝑇, 𝑡)]  is the 

residual from Equation 1 and 𝜀𝑚𝑇, 𝑡  is the deviation in the excess market 

return for month t from the average value over the corresponding window. 

Notably, other alternatives to the Harvey and Siddique (2000) co-skewness 

estimator exist. In their seminal paper, Kraus and Litzenberger (1976) introduced an 

unconditional estimator which does not have the orthogonality property associated 

with the Harvey and Siddique (2000) estimator. The later point is important in the 

context of the present work, as the Harvey and Siddique (2000) approach allows us to 

disentangle the horizon effect of co-skewness from that of beta, while providing a 

conditional version of the original Kraus and Litzenberger (1976) three-moment 

model. Moreover, as detailed by Harvey and Siddique (2000), their estimator is unit 

free and analogous to a factor loading. While the focus here is on the commonly-

examined Harvey and Siddique (2000) estimator, we assess the robustness of our 

findings to the use of the Kraus and Litzenberger (1976) approach in Appendix D. Other 

approaches to estimate co-skewness, while not investigated here, have also been 

proposed including the predictive ordering method of Langlois (2020) and shrinkage 



 

9 
 

approach of Boudt et al. (2020). 

Although the literature has not considered in detail the statistical small-sample 

properties of the empirical estimators of co-skewness, analogous statistical properties 

have been examined for skewness estimators. Eberl and Klar (2020) examine the 

asymptotic properties of various empirical counterparts of theoretically motivated 

skewness estimators. The standardized central third moment, relating to the co-

skewness estimator discussed here, is shown to have mediocre behaviour, especially 

for small samples. Contrasting the conventional coefficients of skewness and kurtosis 

with robust counterparts, Kim and White (2004) demonstrate the susceptibility of the 

conventional estimators to outliers in the data. These findings act as a further 

motivation to assess the horizon impact on co-skewness, based upon the weakened 

influence of outliers at long horizons. Our findings act as further evidence for the 

empirical challenges involved in the estimation of co-skewness using commonly used 

approaches. 

2.2. Decomposition of Co-skewness: the Sum of Intertemporal Cross-covariances 

A substantial literature has documented the horizon effect on both security alphas 

(Boguth et al., 2016) and betas (see, for example, Handa et al. (1989) and Hawawini 

(1983)), but the impact on co-skewness remains an open question. Given that 

residuals, 𝜀𝑖𝑇, 𝑡, can be written as a function of both α and β, as shown in Equation 

1, this, in isolation, should lead to co­ skewness being horizon-dependent. In this 

paper, however, we wish to demonstrate the horizon dependence of co-skewness, 

itself related to intertemporal characteristics associated with return time series, 

independent of the horizon effect on alphas and betas. Similar to Cohen et al. (1983b), 

we develop a model to relate the horizon effect of co-skewness to characteristics of 

autocovariance and intertemporal cross-covariance, in light of the frequent 

documentation of these characteristics for financial time series in the literature 

(Cohen and Frazzini, 2008; Lo and MacKinlay, 1990).6 We acknowledge that there may 

be multiple fundamental drivers of such horizon effects such as clientele, investment 

horizon preferences and estimation bias. Many of these suggested sources may 

manifest as autocorrelation and intertemporal correlation in the underlying data and, 

which, in turn, impact the estimation of co-skewness. Our approach has the benefit of 

allowing us to garner further insight into the estimation of co-skewness at various 

horizons in a frictionless environment. To this end the following proposition details 

the relationship between long-run co-skewness and characteristics estimated at short-

run horizons. 

Proposition 1. Given an observed empirical distribution of logarithmic stock returns  

𝑅iT, and market returns 𝑅mT, at horizon T the estimated co-skewness for stock i can 

 
6 While our model can be expressed in terms of intertemporal cross-correlation terms, an exposition in terms of 

intertemporal cross-covariance provides equivalent insights, we follow this route for brevity. 
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be written as a function of unit returns 𝑅i1, and 𝑅m1, the length of the horizon the 

intertemporal auto-covariance of stock returns and market returns the intertemporal 

cross-covariance between returns of the stock and squared market returns and the 

estimated betas at horizon T and is given by: 

𝛾iT,t =
𝑐𝑜𝑣(𝜖iT,t,𝜖mT,t

2 )

𝜎(𝜖iT,t)⋅𝑣𝑎𝑟(𝜖mT,t)

=
∑  𝑇−1

𝑗=0 ∑  𝑇−1
𝑘=0 ∑  𝑇−1

𝑙=0 𝑐𝑜𝑣(𝑅i1,t-j,𝑅m1,(t-k)⋅𝑅m1,(t-l))−𝛽̂iT,t ∑  𝑇−1
𝑗=0 ∑  𝑇−1

𝑘=0 ∑  𝑇−1
𝑙=0 𝑐𝑜𝑣(𝑅m1,t-j,𝑅m1,(t-k)⋅𝑅m1,(t-l))

√∑  𝑇−1
𝑘=0 ∑  𝑇−1

𝑢=0 [𝑐𝑜𝑣(𝑅i1,(t-k) ,𝑅i1,(t-u))−𝛽̂iT,t𝑐𝑜𝑣(𝑅i1,(t-k) ,𝑅m1,(t-u))]⋅∑  𝑇−1
𝑘=0 ∑  𝑇−1

𝑢=0 𝑐𝑜𝑣(𝑅m1,(t-k),𝑅m1,(t-u))

                (3) 

Proof: See Appendix A. 

Equation 3 demonstrates that co-skewness at horizon T can be expressed as a function 

of short-run returns, 𝑅i1,  and 𝑅m1, , accounting for characteristics of auto-

covariance and intertemporal cross-covariance. In Appendix A we show that α has no 

impact on the estimation of co-skewness and 𝛽iT,t, can be expressed as a function of 

short-run characteristics using the following expansion, as suggested in the literature: 

𝛽̂iT,t =
𝑐𝑜𝑣(𝑅iT,t,𝑅mT,t)

𝑣𝑎𝑟(𝑅mT,t)
=

∑  𝑇−1
𝑘=0 ∑  𝑇−1

𝑙=0 𝑐𝑜𝑣(𝑅i1,(t-k),𝑅m1,(t-u))

∑  𝑇−1
𝑘=0 ∑  𝑇−1

𝑙=0 𝑐𝑜𝑣(𝑅m1,(t-k) ,𝑅m1,(t-u))
.                    (4) 

2.3. The Long-Run Horizon Effect 

Cohen et al. (1983a) documents that the estimated beta would converge to a 

“true” beta when the horizon is sufficiently lengthened, since returns measured using 

longer-horizons are less affected by serial correlations. Hawawini (1980a) suggests 

that if there is neither autocorrelation in market returns nor intertemporal cross-

correlation between securities’ returns and the market returns, beta is invariant to the 

length of the investment horizon. In a similar sense, we derive the following 

proposition to understand the long-horizon implications for co-skewness in a 

frictionless environment: 

Proposition 2. Given a stationary distribution of observed returns and 

assuming the absence of intertemporal auto-covariances and cross-covariances 

among asset returns, the magnitude of intertemporal estimates of unconditional 

co-skewness are inversely related to the square-root of the horizon T and co-

skewness estimated using unit returns as 𝛾iT,t follows: 

𝛾iT,t =
𝛾i1,t

√𝑇
.                                (5)  

Proof: See Appendix B. 

 

Equation 5 is analogous to the square root of time scaling law associated with risk 

and the related rule proposed for skewness (Lau and Wingender, 1989). The former 
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has also been shown to be perturbed by serial dependence in the underlying time 

series (Wang et al., 2011). 

In Equation 5, we demonstrate that the horizon effect on co-skewness may exist 

even in an efficient market with no price delay. Furthermore, Equation 5 shows the 

horizon effect on co-skewness is not merely a consequence of the horizon effect 

associated with beta and alpha, as might be expected from their individual horizon-

dependence. Instead, co-skewness has an inherent sensitivity to the investment 

horizon, but without a frictionless market the estimation of co-skewness may be 

perturbed by autocorrelation and intertemporal cross-correlations. 

3. Data and Empirical Facts 

3.1. Data 

To examine empirically the horizon effect on co-skewness, our initial sample 

consists of all NYSE/AMEX/NASDAQ-listed stocks with available data from the Center 

for Research in Security Prices (CRSP). Alongside prices, the number of outstanding 

shares, trading volumes and adjusted dividends are also collected. We use stocks with 

share codes 10 or 11. We include both listed and dead firms. Thus, our data set is free 

of any potential survivorship bias. Our sample period is August 1, 1962 to December 

31, 2020. 

There is no agreement on the horizons to be examined among studies on the 

horizon effect. Kamara et al. (2016) and Brennan and Zhang (2019) consider longer 

horizons from one month to 60 months, while studies such as Hawawini (1980a) and 

Corhay (1992) use shorter horizons of less than a month. We follow the choice of 

Handa et al. (1989), where both short and long horizons are considered. Nine horizons, 

in total, are considered. Daily, bi-daily, weekly and bi-weekly (1-day, 2-day, 5-day and 

10-day) logarithmic returns are collected or constructed from the CRSP daily tape, and 

returns with longer horizons (1-month to 12-months) are from the CRSP monthly tape. 

For all horizons, we primarily employ self-calculated value-weighted returns using all 

stocks as the market index.7 The risk-free rate is the (compounded) three­ month T-

bill rate, and we also scale the rate for each sampling horizon. 

Following previous research examining the horizon effect, we detail our empirical 

results by forming portfolios based on the market capitalization of securities. As 

mentioned above, Theobald and Yallup (2004) suggest that the speed of pricing 

adjustment for larger firms is greater than that for smaller counterparts. Post et al. 

(2008) also examines market capitalization-based portfolios, indicating that gamma 

decreases from small to larger capitalization stocks. Therefore, we hypothesize that 

 
7 We do not use the CRSP index as our market index because its returns are not logarithmic, and therefore are not 

additive. Our daily market returns are reasonable and closely track the daily CRSP index having a correlation 

coefficient of 0.96. 
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larger firms have a relatively smaller horizon effect on co-skewness. We allocate all 

securities into 10 deciles based on the NYSE break­ points (NYSE breakpoints are 

collected from the Kenneth French data library). 

Table 1 documents the intertemporal cross-correlations between each size decile 

and the market portfolio. The “1-lag” (“1-lead”) cross-correlation coefficient indicates 

the cross-correlation between the decile returns and market returns lagged by 

(leading by) one period. For all size deciles, we observe an increase in 1-lag serial cross-

correlations and autocorrelation from daily data to monthly data. This increase in 

serial cross-correlation will impact upon the estimation of co-skewness, as 

demonstrated in our discussions on the long-run horizon effect in Section 2.4. 

Moreover, returns of smaller firms have greater cross-correlations to market returns. 

This supports the evidence detailed by previous literature that the speed of pricing 

adjustment for larger firms is relatively more rapid. Finally, we observe some evidence 

for significant serial cross-correlation and autocorrelation for daily data for a lag of 5 

days, highlighting how pervasive autocorrelation in returns is. 

TABLE 1 ABOUT HERE 

 

3.2. Sensitivity of Estimated Co-skewness to the Investment Horizon 

In this subsection, we provide empirical evidence for the existence of a horizon 

effect on portfolio co-skewness. Co-skewness is calculated for each portfolio using a 

15-year moving window, across nine horizons from 1 business day to 1 year. In each 

case, co-skewness is estimated relative to the value-weighted market index. Table 2 

presents the averaged co-skewness using horizons of 1, 2, 5, and 10 days, and 1 to 12 

months, and details associated test statis­ tics. Figure 1 illustrates the magnitude of 

co-skewness averaged for three representative deciles (Decile 1, Decile 6 and Decile 

10) along with associated confidence intervals. 

We document the average co-skewness for each size decile across horizons, 

showing clear evidence of an horizon effect on co-skewness. This horizon effect is 

particularly evident for deciles comprising the smallest and largest capitalization 

stocks. For example, at a 1-day horizon co-skewness for Decile 1 is -0.520, increasing 

to 0.097 and 0.124 for 6-month and 12-month horizons, respectively. This also 

highlights a second novel finding. For the first four size deciles, the sign of co-skewness 

reverses as we move from short to long-horizons. While Deciles 8 and 9 display 

negative co-skewness at all horizons, Decile 10 has positive co-skewness for all but the 

6 and 12 -month horizon, where co-skewness is found to be only marginally negative 

(-0.008 or -0.004). These findings relate to previous work, which demonstrates that 

betas of smaller firms tend to increase, while those for the largest firms decline as the 

investment horizon lengthens (Cohen et al., 1983b). 
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One possible explanation for the empirical phenomena described relates to the 

impact of price delay. Given that firm size is a proxy for price adjustment delay, the 

magnitude of estimated co-skewness may be influenced by the speed of stock price 

reaction to market wide information. In keeping with this notion, co-skewness 

estimates for portfolios consisting of stocks with smaller capitalization display strong 

variation from the shortest to longest horizons. 

To better examine the relation between the strength of the horizon effect and the 

price delay, Panel B summarizes three measures through which we capture the 

relative size and significance of the horizon effect in co-skewness. The extant literature 

considering the horizon effect has not specified a standard test to measure the 

strength of the horizon effect. The standard deviations of estimates for the same 

security over horizons and the F-statistics of ANOVA1 are suggested as indicators 

(Corhay, 1992). As our second measure, we augment the use of ANOVA1, with a One-

Way Repeated Measures ANOVA, since tests of significance for ANOVA1 are known to 

be valid only if the samples are independent and the variance of each sample is equal.8 

Therefore, in our tests, if there is no horizon effect, the standard deviation and 

augmented F-statistics should be zero, while larger values indicate a stronger effect. 

Furthermore, we define an intuitive variable, referred to as Estimation Bias or EB_(γ,i), 

as the sum of the absolute differences between other horizon estimates and monthly 

estimates: 

  𝐸𝐵𝛾,𝑖 = ∑  𝑛 |𝛾
¯

in,t − 𝛾
¯

i𝑇𝑚,𝑡|𝑛 ∈ {𝑡ℎ𝑒𝑐ℎ𝑜𝑖𝑐𝑒𝑜𝑓ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑠}                    

(6) 

where 𝛾
¯

in,t are the averaged co-skewness for an n - day horizon and Tm stands 

for the length of a business month. 𝐸𝐵  quantitatively captures the aggregate 

tendency of co-skewness estimates to vary from that measured at a monthly horizon, 

given monthly data is mostly employed in the existing literature. This measure of 

estimation bias is zero if there is no horizon effect. 

We reject the null hypothesis that co-skewness is equal to that estimated at a 

monthly hori­ zon at a 1% level for the three measures shown in Panel B. Specifically, 

for all securities with smaller market capitalization relative to that of the averaged 

market capitalizations of firms constituting the market portfolio, the magnitudes of 

the horizon effect on their co-skewness are inversely related to their market 

capitalizations. For example, Decile 8 has the smallest standard deviations of 0.0095 

and estimation bias of 0.707, and Decile 9 has the lowest F- value. Companies in the 

first 9 deciles all have lower market capitalizations than the market average and their 

standard deviations are found to be inversely related to the market capitalization. In 

 
8 The one-way repeated measures ANOVA (also known as a within-subjects ANOVA) is ideal in testing the 

horizon effect, since it is used to determine whether three or more group means are different where the participants 

are the same in each group. 
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contrast, for Decile 10 in which firms have greater-than-average size, the sensitivity of 

co-skewness estimates to the investment horizon is considerably higher compared to 

those of Decile 8 and Decile 9. These findings may suggest that, for any security, the 

greater the deviation in the firm’s size relative to the average size of companies in the 

market index, the more sensitive the co-moments will be to the selection of the 

investment horizon. 

Furthermore, our findings for co-skewness sign reversal indicate that, in addition 

to price delay, co-skewness may be affected by other factors. If price delay is the sole 

driver of the horizon effect (as concluded by the literature describing the horizon 

effect on betas), the estimated co-skewness should converge to zero for longer 

horizons, as price delay timelines become smaller relative to the horizon considered. 

In contrast, we find that the estimated co-skewness of a portfolio tends to increase 

(i.e. Decile 1) or decrease (i.e. Decile 10) for longer horizons. This may be related to 

the clientele effect suggested by Kamara et al. (2016). Investors with different 

horizons may have different preferences on skewness, given that the risk aversion is 

also found to be horizon-dependent (Andries et al., 2019). Thus, the co-skewness of 

an asset or a portfolio that is preferred by shorter-horizon investors, as it has negative 

co-skewness, may be positive at longer horizons. 

Given our novel findings documented, in the section which follows, we provide 

theoretical evidence that, while price delay is a leading reason for the for the horizon 

effect on co-skewness reported, it may not be the only one. Moreover, we examine 

the different pricing roles of co­ skewness risk at short, intermediate and long 

horizons. 

3.3. Model of Horizon-Dependent Co-skewness 

We now test if the theoretical decomposition, Equation 3, of co-skewness using 

short­ horizon returns while accounting for intertemporal cross-covariance provides 

an adequate de­ scription of the properties of empirical co-skewness estimates. In 

Table 3, we illustrate the estimates of co-skewness originating from our horizon-

dependent model for Decile 1 and Decile 10. The focus is on unconditional co-

skewness estimates using data over the period 1962 - 2020. 

TABLE 3 ABOUT HERE 

To calibrate Equation 3, we require estimates of residual returns εiT,t and εmT,t 

at the shortest horizon under consideration (1-Day). Equation 3 also requires 

estimates of long-horizon beta. Beta can, in turn, be either empirically estimated using 

long horizon data or model-generated from short-horizon data using Equation 4. In 

Table 3, beta is empirically estimated using long horizon data, but results are 

consistent for model generated betas. 
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Panel A of Table 3 details the model estimate of co-skewness by incorporating 

different orders of serial-covariance and intertemporal cross-covariance. The first row 

lists the simulated results without any serial covariance terms (0 order). Moving from 

short to long horizons, a clear monotonic increase in co-skewness is observed, with 

the long horizon theoretical estimate converging towards zero. These findings provide 

support for the 1/√𝑇  rule, described in Proposition 2. In the absence of serial-

covariance and intertemporal cross-covariance, co­skewness estimates converge 

towards zero. The results, however, present a clear difference be­ tween modelled co-

skewness with no serial covariance and estimates found using long-horizon data. For 

example, for Decile 1 the model suggests a value of -0.057 for 3-month (65-day) co-

skewness, while the empirical estimate is 0.246. These differences can be attributed 

to a presence of intertemporal covariance terms which, in the sense of Hawawini 

(1983), bias the estimation of co-skewness. 

Including intertemporal covariance terms of order 1, we see that the 5-Day 

theoretical estimate of -0.418 is now approximately in keeping with that of the 5-Day 

empirical estimate. Similar findings are evident at higher orders. At the limit, we 

consider up to 64 intertemporal covariance terms and we observe that 3-month 

theoretical co-skewness increases from -0.057 to 0.242 as the number of 

intertemporal covariance terms is increased, where the latter is in keeping with the 

estimate from long horizon data. Similar findings are evident for the largest decile. 

This highlights the importance of intertemporal covariance terms in the estimation of 

long-horizon co-skewness. Furthermore, these results illustrate why empirical co-

skewness estimates do not follow the 1/√𝑇 rule described in Proposition 2, as they 

are perturbed by intertemporal covariance in the underlying time series from the 

theoretical level where such terms are absent. 

In panel B, we also examine the importance of intertemporal relations in the 

underlying time-series on co-skewness estimates at different horizons. The objective 

here is to determine the extent of the impact of serial- and cross-serial correlation on 

co-skewness. To this end, we add increments to the serial- and cross-serial correlation 

terms and examine whether this changes the magnitude and sign of co-skewness. 1st 

and 4th order intertemporal relations are considered as examples. Our findings 

indicate that adding larger increments in absolute value terms (e.g. +0.03 or -0.03) 

further biases the estimation of co-skewness. 

For example, considering just 1st order intertemporal terms, the estimate of co-

skewness from the model in Panel A is -0.418 at a 5-Day horizon. Including an 

increment of -0.03 (0.03) to the 1st order serial correlation and cross-correlation 

terms, we see that the magnitude of co­ skewness changes to -0.298 (-0.133). 

Highlighting the importance of higher order terms, when the same increment is 

applied to the first four serial and cross-correlation terms, co-skewness ranges from -
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0.576 to -0.316, bracketing the estimated co-skewness level. Similarly, for Decile 10 

with 4th order intertemporal terms, co-skewness is 0.334 using 5-Day data. 

Incrementing both serial and cross-correlations by amounts ranging from -0.03 to 0.03 

results in co-skewness estimates ranging from 0.046 to 0.388. 

Our model of co-skewness horizon dependence shows a clear relationship with 

intertemporal correlation terms. Without such terms the scaling law derived in 

Equation 5 holds, with co-skewness converging to zero at long horizons. For example, 

in the first row where zero-order serial correlation and cross-correlation are 

considered, the 3-Month estimate (-0.057) is approximately 1/√65 of the 1-Day co-

skewness (-0.457). In other words, co-skewness has an inherent horizon dependence, 

but this may be masked in long horizon co-skewness estimates due to intertemporal 

covariance. Incorporating various lags of interdependence we provide evidence that 

co-skewness estimates at different horizons are impacted by underlying time series 

characteristics. These findings, along with the earlier empirical results surrounding co-

skewness estimates, may have implications for higher-order asset pricing, a question 

we address next. 

4. Higher-order Asset Pricing and Horizon-Dependent Co-skewness 

We next explore implications for higher-order asset pricing. Harvey and Siddique 

(2000) and Kostakis et al. (2012), among other studies, constructed a co-skewness risk 

factor, CSK, in a similar fashion to the Fama and French (1993) factors by using return 

spreads between portfolios with the lowest 30% and highest 30% co-skewness. In this 

paper we reconstruct the co-skewness factor by estimating co-skewness at each 

horizon and sorting stocks into co­ skewness deciles. The descriptive statistics for each 

co-skewness decile, as well as return spreads between co-skewness Decile 1 and 

Decile 10 along with the constructed CSK pricing factor, are shown in Table 4. 

TABLE 4 ABOUT HERE 

We find evidence of significant variation in co-skewness across the 10 deciles, 

demonstrating that co-skewness is a meaningful sorting criterion across all horizons. 

Kostakis et al. (2012) suggest that investors require a premium to hold shares with 

negatively co-skewed returns, which indicates a lower return for shares with higher 

co-skewness. Therefore, the decile with the most negatively co-skewed shares (Dec1) 

should yield a significantly higher average excess return relative to Dec10, if the co-

skewness factor can capture the cross-sectional expected re­ turns. We find this to be 

the case for co-skewness deciles using returns with 5-Day, 10-Day and 1-Month 

horizons. For each of these there is a significant return spread between Decile 1 and 

Decile 10. Consistent results are found for the co-skewness factor, CSK. Therefore, we 

can hypothesize that the pricing roles of the co-skewness factor (CSK) might be only 

significant when intermediate horizons (5-Day, 10-Day and 1-Month) horizons are 
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considered. At long horizons, we provide evidence that the returns on deciles increase 

as we move from Decile 1 to Decile 10. These contrasting results between short- and 

long-horizons, along with the evidence for co-skewness estimates converging towards 

zero at long horizons provided above, indicate that the risk premium associated with 

co-skewness may not persist at long-horizons. We next investigate this formally. 

Next, using the Fama and MacBeth (1973) two-step method at different 

investment horizons, we assess whether the cross-sectional variation in asset returns 

can be explained by expo­ sure to co-skewness. In order to compare the results across 

horizons, we follow the approach of Kamara et al. (2016). In the first stage, we run 

time-series regressions for each individual stock to estimate the moving window (15-

year) k-month (or -day) factor exposure. For example, the 15-year 6-month exposures 

of CSK (𝛽6
𝐶𝑆𝐾) factors in the month t are estimated using overlapping 6-month excess 

6returns and the 6-month co-skewness factor using the past 15-year window. 𝛽6
𝐶𝑆𝐾 

stands for the exposure of the k-month co-kurtosis factor which is defined as the k-

month spread returns of securities with 30% largest co-kurtosis and those with 30% 

lowest, analogous to those presented for CSK. For all co-skewness betas in the 

regression of month t, the average beta of the firms in the co-skewness decile is used 

for the firm beta. 

Then, in the second-stage, in addition to including  𝛽𝑘
𝑀𝐾𝑇, 𝛽𝑘

𝐶𝑆𝐾 and 𝛽𝑘
𝐶𝐾𝑇 for 

k-month (or-day) horizons, we also control for the variable SIZE that is the natural 

logarithm of market capitalization measured at the end of month t-1 and the variable 

B/M is the book-to-market ratio of month t. We use the book value of the fiscal year 

ending in year y-1 and market value in December of year y-1 for the 12 months from 

July of year y to June of year y+1. For longer horizons formed using monthly returns, 

we also include several more commonly used covariates, such as the momentum and 

the short-term price reversal factors as used in Kamara et al. (2016), as well as long-

term reversal (McLean, 2010), illiquidity ratios (Amihud, 2002) and idiosyncratic 

volatility (Ang et al., 2006) factors.9  

Table 5, Panel (a) reports results for the Fama-MacBeth second stage regressions. 

The slope coefficients are generated as average values across all months. The t-

statistics (in brackets) of the cross-sectional regression coefficients are calculated 

using Newey-West standard errors to reduce the impact of overlapping returns. 

TABLE 5 ABOUT HERE 

Results provide further support for the idea that the implications of stock co-

 
9 We calculate the momentum (R12, 2) as the 11-month cumulative return in months [t-12, t-2], the short-term 

price reversal (R1, 1) as the return in [t, t-1] while the long-term as (R60, 13). The illiquidity measure follows the 

set-up of Amihud (2002) and monthly idiosyncratic volatility is calculated from daily residual terms in each month 

of basic CAPM model as suggested by Ang et al. (2006). These factors are examined in the literature where 

monthly or longer-horizon returns are mainly considered. Thus, we do not add them when daily and other shorter-

horizons are tested. 
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skewness are different dependent on the horizon examined. Specifically, the co-

skewness factor, CSK, is found to only be priced at 2-day, 5-day, 10-day and 1-month 

horizons. For horizons longer than 1 month, there is no evidence that CSK is a priced 

factor.10 When we control for other variables our findings are unchanged. CKT, the 

co-kurtosis factor, is found to have a significant negative price of risk at a 10 day and 

1 month horizon. Size, momentum and reversal are related to excess returns at all 

horizons. The book to market variable, B/M, is not found to be linked with excess 

returns. Results for two subsamples for the period 1962-1989 and 1990-2020 are 

shown in Table 5, Panels (b) and (c) respectively. Findings are consistent, with co-

skewness found to be priced only at short horizons. 

Our empirical evidence adds to the body of literature which indicates that previous 

findings relating to co-skewness result from the specific empirical set-up employed. In 

the sense of Post and Levy (2005) and Post et al. (2008), the results documented here 

might be interpreted as evidence against the co-skewness premium as providing 

support for the three-factor model. If institutional investors have long-run investment 

horizons, then our findings indicate that the co­skewness premium is not obtainable 

for such investors. Assessing the Fama and French (1993) factors, Kamara et al. (2016) 

propose that clientele effects result in the appropriate horizon to assess risk factors 

differing across factors. In the context of the results detailed here, this might be a 

consequence of short run investors being compensated for exposures to shocks to 

which long-run investors are less sensitive. 

5. Discussion and Concluding Remarks 

Co-skewness extends the Sharpe-Lintner CAPM, allowing for more detailed 

characterization of individual asset risk. While the extant literature has highlighted the 

importance of co-skewness in explaining the cross-section of stock returns, the choice 

and implications of the return horizon selected have not been considered. Based on 

an extensive data sample of stocks from the CRSP database for the period 1962 to 

2020, this paper details the sensitivity of co-skewness estimates to the return horizon. 

Developing a system of consistent sequential tests, we also measure the strength of 

the horizon effect for co-skewness estimation. In order to develop an understanding 

as to the drivers of horizon-dependent co-skewness, we propose a model of long-

horizon co-skewness which employs only data at the shortest horizon. Using this, we 

provide evidence that serial- and intertemporal cross-correlations influence the 

estimation of co-skewness, but that co-skewness also has an inherent horizon 

dependence. Finally, we assess whether co-skewness is priced at different horizons. 

Accordingly, this study sheds new light on research considering higher-order asset 

 
10 In other regressions, examining only the relationship between excess stock returns and two factors, MKT and 

CSK, identical results were obtained, indicating that our findings are not a consequence of the inclusion of other 

control variables. 
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pricing and portfolio selection. First, we provide evidence that the magnitudes of the 

estimates of third moment pricing coefficients (gamma) are significantly influenced by 

sampling horizon. More­ over, the sign of gamma may reverse for longer horizons. 

Second, we refine our estimation of gammas by using returns of market-capitalization 

sorted portfolios measured over horizons from one day to twelve months. Firm 

market capitalization is used as a proxy for price adjustment delay. We provide 

evidence that the horizon effect on co-skewness is strongest for the smallest and 

largest companies, in keeping with the premise of price adjustment delays. We also 

propose a “scaling law” for co-skewness, highlighting an inherent horizon dependency 

for co-skewness. Finally, we examine implications for asset pricing and show that co-

skewness is only priced at short horizons ranging from two days to one month. 

We conclude with a word of caution to empirical researchers who use higher-order 

asset pricing or portfolio selection in their empirical work. First, the literature 

documents some return anomalies such as the Size Effect (Banz, 1981) and Liquidity 

Effect (Amihud, 2002). Investors may purchase stocks with smaller capitalizations or 

less liquidity while seeking out opportunities for extra returns. Our results suggest that 

investors in smaller or less liquid firms should pay greater attention to the choice of 

the investment horizon in analysing the higher-order systematic risk exposure of such 

securities. Second, recent portfolio selection theory suggests that risk-averse investors 

are attracted to securities with positive co-skewness estimates. One implication of our 

findings, however, is that the relative ranks of portfolio co-skewness alter when the 

sampling horizon is lengthened. In particular, co-skewness is significantly sensitive to 

the investment horizon, since not only the magnitudes but also the signs of co-

skewness change. An asset that is selected based on its positive co-skewness using a 

particular sampling horizon may have negative co-skewness using another horizon. To 

sum up, the horizon effect presents potential ambiguity in pricing and the selection of 

assets for different situations. 
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Table 1: Intertemporal Correlation Tests among Size Deciles and the Market Index 

across Horizons 

 

 
 

Note: In Panel A, stocks from August, 1962 to December, 2020 on the CRSP daily 

tape are used. Stocks are allocated into 10 size deciles based on the NYSE 

breakpoints. The first, Decile 1, contains the smallest firms and the last, Decile 10, 

contains the largest. For each size portfolio, the intertemporal cross-correlations 

between the lead and lag market portfolio and size portfolios are also calculated. 

The “1-lag” cross-correlation coefficient indicates the cross-correlation between 

the size portfolio returns and 1-lag market returns. ***, ** and * indicate that 

we reject the null hypothesis that there is no serial correlations at 99%, 95% and 

90% level, respectively. Panel B follows the same estimation process by using 

stocks from August, 1962 to December, 2020 on the CRSP monthly tape.



 

 

Table 2: Co-skewness of Size Deciles across Horizons 

 
Note: Co-skewness estimated using value-weighted portfolio returns and the market index are illustrated in Panel A. Stocks are allocated into 

10 size deciles based on the NYSE breakpoints. Daily returns of stocks from August, 1962 to December, 2020 on the CRSP daily tape are used 

when estimating 1-day, 2-day, 5-day and 10-day co-skewness, and similarly monthly returns of stocks on the CRSP monthly tape are used to 

estimate 1-month and longer-horizon co-skewness. The first, Decile 1, contains the smallest firms and the last, Decile 10, contains the largest. 

For each size decile and each horizon, we compute the co-skewness estimate at each month from August 1977 to December 2020 using the 

previous 15-year periods. This table details the average across all portfolio co-skewness estimates. In Panel B, the standard deviation, repeated 

measure ANOVA tests and estimation bias estimates, as in Equation 6 are used in detecting the magnitude of the horizon effect. 

***, ** and * indicate that the null hypothesis that the estimates are equal to zero is rejected at the 99%, 95% or 90% level, respectively. 

 

 



 

 

Table 3: Modelled Co-skewness Estimates 

 
Note: Co-skewness is modeled using data over the period August, 1962 to December, 2020. A value-weighted market index is constructed using 

the CRSP daily tape. Co-skewness is modelled using daily returns and estimates of intertemporal covariances. Results for the smallest-size decile 

(Decile 1) and largest-size decile (Decile 10) are illustrated as representative. Panel A details the modelled co-skewness for differing orders of 

intertemporal covariance. To match with the horizons used, the first row lists the simulated results if there is no serial or cross-serial covariance 



 

 

relationships (0 order), the second row when relationships up to 4-order are included, etc.. The row titled “Estimated” corresponds to the co-

skewness estimated using returns data with the relevant horizons. The row named “Modeled” shows the modeled co-skewness taking into 

account all relevant intertemporal relationships. The row titled 1/ N highlights the expected co-skewness estimate in the absence of 

intertemporal relationships, in keeping with Proposition 2. Panel B further lists modelled results with fixed 1 or 4-order intertemporal 

relationships but with increments (Incre.) to the estimated serial- and cross-serial correlation of between -0.03 and 0.03. 
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Table 4: Performance and Characteristics of Deciles Constructed on the Basis of Co-skewness 

 

 
Note: This table reports the characteristics of co-skewness deciles during the period August 1962–December 2020. All shares on the CRSP daily 

tape and monthly tape are sorted at month t in ascending order according to their co-skewness values estimated via a rolling window of 15-year 

observations and they are assigned to 10 deciles. Dec1 is the decile containing the shares with the lowest (most negative) estimated co-skewness 

and Dec10 with the highest (most positive) co-skewness. The excess returns of these deciles are calculated at month t + 1 (i.e. post ranking 
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returns). Dec1–Dec10 stands for the spread between decile 1 and decile 10. Deciles are re-balanced on a monthly basis. VW returns correspond 

to the returns of value weighted portfolios. CSK shows the values of the co-skewness factor constructed as the return on a portfolio taking a long 

position in stocks with co-skewness in the lowest 30% and a short position in stocks with co-skewness in the highest 30%. ***, ** and * indicate 

that the null hypothesis that the estimates are equal to zero is to rejected at 99%, 95% or 90% level, respectively. 
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Table 5: Fama-MacBeth Regression Results with a Co-skewness factor (CSK)  

 

 
(continued)                      
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Note: This table reports the results of the second stage of the Fama-MacBeth regressions at different investment horizons. In order to compare 

the results across horizons, we follow the approach of Kamara et al. (2016). In the first stage of the Fama-Macbeth regression, the moving 

window (15-year) k-month (or -day) exposures of MKT, CSK and CKT (βkMKT, βkCSK, and βkCKT) factors in the month t are estimated using 

overlapping k-month (-day) excess returns and overlapping k-month (-day) factors using the past 15-year window. For all betas in the regression 
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of month t, the average beta of the firms in the beta decile is used for the firm beta. The variable B/M is the book-to-market ratio of month t. 

We use the book value of the fiscal year ending in year y-1 and market value in December of year y-1 for the 12 months from July of year y to 

June of year y+1. The variable SIZE is the natural logarithm of market capitalization measured at the end of month t-1. For longer horizons based 

on monthly returns, more co-variates such as the momentum (R12, 2) factor (i.e. 11-month cumulative return in months [t-12, t-2]), the short-

term price reversal (R1, 1) factor, the long-term price reversal (R60, 13) factor, horizon-adjusted illiquidity ratio and idiosyncratic volatility are 

controlled for. All independent variables are standardized to a mean of 0 and a standard deviation of 1 in each month. ***, ** and * stand for 

99%, 95% and 90% significance level. 
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Figure 1: 

Co-skewness of Representative Size Deciles (Decile 1, 6 and 10) across Horizons. 

Stocks during 1962 to 2020 are sorted into 10 size deciles. Co-skewness estimates of 

representative size deciles (Decile 1, 6 and 10) across horizons are illustrated. The first, 

Decile 1, contains the smallest firms and the last, Decile 10, contains the largest. For 

each individual stock of each decile across horizons, we estimate co-skewness each 

month using the previous 15-year periods. This figure details the average across all 

estimated decile stock co-skewness estimates. The distribution of other estimates for 

each decile are displayed in gray. 
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APPENDIX A: 

 

Proof of Proposition 1: The Horizon Effect on Co-skewness (Equation 3) 

 

 

Proof. Given that εiT,t in Equation 3 is the residual previously extracted from 

the CAPM re­ gression and εmT,t is the deviation of the excess market return in 

month t from the average value over the corresponding window, it follows: 

 

{
𝜖
¯

iT,t = 0𝑢𝑠𝑖𝑛𝑔𝑂𝐿𝑆𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝜖
¯

mT,t = 𝑅mT,t − 𝑅
¯

mT,t

¯

= 0

 

 

Thus, co-skewness as in Equation 2 can be re-written as: 

𝛾iT,t =
𝐸[𝜖iT,t𝜖mT,t

2 ]

√𝐸[𝜖iT,t
2 ]𝐸[𝜖mT,t

2 ]
=

𝐸[(𝜖iT,t−𝜖
¯
iT,t)(𝜖mT,t

2 −𝜖
¯
mT,t
2 )]

√𝐸[(𝜖iT,t
2 −𝜖

¯

iT,t
2 )]𝐸[(𝜖mT,t

2 −𝜖
¯
mT,t
2 )]

.                  (A.1) 

 

Given that 𝐸 [(𝜀𝑖𝑇, 𝑡 −  𝜀 𝑖𝑇, 𝑡)]  =  𝜀 𝑖𝑇, 𝑡 −  𝜀 𝑖𝑇, 𝑡 =  0, the numerator can be 

derived as 

𝐸[(𝜖iT,t − 𝜖
¯

iT,t)(𝜖mT,t
2 − 𝜖

¯

mT,t
2 )]     = 𝐸[(𝜖iT,t − 𝜖

¯

iT,t)(𝜖mT,t
2 − 𝜖

¯

mT,t
2 + 𝜖mT,t

2
¯

− 𝜖mT,t
2
¯

)]

    = 𝐸[(𝜖iT,t − 𝜖
¯

iT,t)(𝜖mT,t
2 − 𝜖mT,t

2
¯

)] + 𝐸[(𝜖iT,t − 𝜖
¯

iT,t)(𝜖mT,t
2
¯

− 𝜖
¯

mT,t
2 )]

    = 𝐸[(𝜖iT,t − 𝜖
¯

iT,t)(𝜖mT,t
2 − 𝜖mT,t

2
¯

)] + 𝐸[𝜖iT,t − 𝜖
¯

iT,t] ⋅ [𝜖mT,t
2
¯

− 𝜖
¯

mT,t
2 ]

    = 𝐸[(𝜖iT,t − 𝜖
¯

iT,t)(𝜖mT,t
2 − 𝜖mT,t

2
¯

)] + 0 ⋅ [𝜖mT,t
2
¯

− 𝜖
¯

mT,t
2 ]

    = 𝑐𝑜𝑣(𝜖iT,t, 𝜖mT,t
2 ).

     

         (A.2) 

Similarly,  √𝐸[(𝜖iT,t
2 − 𝜖

¯

iT,t
2 )] = 𝜎(𝜖iT,t) and 𝐸[(𝜖mT,t

2 − 𝜖
¯

mT,t
2 )] = 𝑣𝑎𝑟(𝜖mT,t) 

Therefore, with 𝜀𝑖𝑇, 𝑡 =  𝑅𝑖𝑇, 𝑡 −  𝛽𝑖𝑇, 𝑡𝑅𝑚𝑇, 𝑡 −  𝛼ˆ 𝑖𝑇, 𝑡 and 𝜀𝑚𝑇, 𝑡 =

 𝑅𝑚𝑇, 𝑡 − 𝑅𝑚𝑇, 𝑡, co-skewness can be further refined as follows:  

𝛾𝑖𝑇,𝑡 =
cov (𝜀𝑖𝑇,𝑡,𝜀𝑚𝑇,𝑡

2 )

𝜎(𝜀𝑖𝑇,𝑡)⋅var (𝜀𝑚𝑇,𝑡)
=

cov (𝑅𝑖𝑇,𝑡−𝛽̂𝑖𝑇,𝑡𝑅𝑚𝑇,𝑡−𝛼̂𝑖𝑇,𝑡,𝑅𝑚𝑇,𝑡
2 −2𝑅‾𝑚𝑇,𝑡𝑅𝑚𝑇,𝑡+𝑅‾𝑚𝑇,𝑡

2 )

√var (𝑅𝑖𝑇,𝑡−𝛽̂𝑖𝑇,𝑡𝑅𝑚𝑇,𝑡−𝛼̂𝑖𝑇,𝑡)⋅var (𝑅𝑚𝑇,𝑡−𝑅‾𝑚𝑇,𝑡)

.           

(A.3) 



 

 

36 

We refer to returns of the shortest horizon (1-Day returns in this study) as unit 

returns. Using logarithmic returns, it follows that 𝑅𝑖𝑇,𝑡 = ∑𝑗=0
𝑇−1  𝑅𝑖𝑙,(𝑡−𝑗), i.e., any 

return 𝑅𝑖𝑇,𝑡 can be expressed as the sum of unit returns. This also applies to market 

returns, 𝑅𝑚𝑇,𝑡. That is, 𝑅𝑚𝑇,𝑡 = ∑𝑗=0
𝑇−1  𝑅𝑚𝑙,(𝑡−𝑗). Accordingly, 𝑅𝑚𝑇,𝑡

2 =

(∑𝑗=0
𝑇−1  𝑅𝑚𝑙,(𝑡−𝑗))

2
= ∑𝑘=0

𝑇−1  ∑𝑙=0
𝑇−1  𝑅𝑚𝑙,(𝑡−𝑘) ⋅ 𝑅𝑚𝑙,(𝑡−𝑙). Given that the covariance 

between a constant and a variable is zero and 

cov (𝑅𝑖𝑇,𝑡, 𝑅𝑚𝑇,𝑡) − 𝛽̂𝑖𝑇,𝑡cov (𝑅𝑚𝑇,𝑡, 𝑅𝑚𝑇,𝑡)

= cov (𝑅𝑖𝑇,𝑡, 𝑅𝑚𝑇,𝑡) −
cov (𝑅𝑖𝑇,𝑡, 𝑅𝑚𝑇,𝑡)

cov (𝑅𝑚𝑇,𝑡, 𝑅𝑚𝑇,𝑡)
⋅ cov (𝑅𝑚𝑇,𝑡, 𝑅𝑚𝑇,𝑡) = 0,

 

we can now rewrite the numerator of Equation A.3 as: 

cov (𝑅𝑖𝑇,𝑡 − 𝛽̂𝑖𝑇,𝑡𝑅𝑚𝑇,𝑡 − 𝛼̂𝑖𝑇,𝑡, 𝑅𝑚𝑇,𝑡
2 − 2𝑅‾𝑚𝑇,𝑡𝑅𝑚𝑇,𝑡 + 𝑅‾𝑚𝑇,𝑡

2 )

 = cov (𝑅𝑖𝑇,𝑡 − 𝛽̂𝑖𝑇,𝑡𝑅𝑚𝑇,𝑡, 𝑅𝑚𝑇,𝑡
2 − 2𝑅‾𝑚𝑇,𝑡𝑅𝑚𝑇,𝑡)

 = cov (𝑅𝑖𝑇,𝑡, 𝑅𝑚𝑇,𝑡
2 ) − 𝛽̂𝑖𝑇,𝑡cov (𝑅𝑚𝑇,𝑡, 𝑅𝑚𝑇,𝑡

2 )

 − 2 ⋅ 𝑅‾𝑚𝑇,𝑡[cov (𝑅𝑖𝑇,𝑡, 𝑅𝑚𝑇,𝑡) − 𝛽̂𝑖𝑇,𝑡cov (𝑅𝑚𝑇,𝑡, 𝑅𝑚𝑇,𝑡)]

 = cov (𝑅𝑖𝑇,𝑡, 𝑅𝑚𝑇,𝑡
2 ) − 𝛽̂𝑖𝑇,𝑡cov (𝑅𝑚𝑇,𝑡, 𝑅𝑚𝑇,𝑡

2 )

 = ∑  𝑇−1𝑇−1
𝑗=0  ∑  𝑇−1

𝑘=0  ∑  𝑇−1
𝑙=0  cov (𝑅𝑖𝑙,𝑡−𝑗 , 𝑅𝑚𝑙,(𝑡−𝑘) ⋅ 𝑅𝑚𝑙,(𝑡−𝑙))

 − 𝛽̂𝑖𝑇,𝑡 ∑  𝑇−1
𝑗=0  ∑  𝑇−1

𝑘=0  ∑  𝑇−1
𝑙=0  cov (𝑅𝑚𝑙,𝑡−𝑗 , 𝑅𝑚𝑙,(𝑡−𝑘) ⋅ 𝑅𝑚𝑙,(𝑡−𝑙)).

                                              

(A.4) 

where 𝛽̂𝑖𝑇,𝑡 can also be written as a function of unit returns, 

𝛽̂𝑖𝑇,𝑡 =
cov (𝑅𝑖𝑇,𝑡, 𝑅𝑚𝑇,𝑡)

var (𝑅𝑚𝑇,𝑡)
=

∑  𝑇−1
𝑘=0  ∑  𝑇−1

𝑙=0  cov (𝑅𝑖1,(𝑡−𝑘), 𝑅𝑚𝑙,(𝑡−𝑢))

∑  𝑇−1
𝑘=0  ∑  𝑇−1

𝑙=0  cov (𝑅𝑚𝑙,(𝑡−𝑘), 𝑅𝑚𝑙,(𝑡−𝑢))
 

Similarly, for the two terms in the denominator, we have: 

√var (𝑅𝑖𝑇,𝑡 − 𝛽̂𝑖𝑇,𝑡𝑅𝑚𝑇,𝑡 − 𝛼̂𝑖𝑇,𝑡)

 = √cov (𝑅𝑖𝑇,𝑡 − 𝛽̂𝑖𝑇,𝑡𝑅𝑚𝑇,𝑡 − 𝛼̂𝑖𝑇,𝑡 , 𝑅𝑖𝑇,𝑡 − 𝛽̂𝑖𝑇,𝑡𝑅𝑚𝑇,𝑡 − 𝛼̂𝑖𝑇,𝑡)

 = √cov (𝑅𝑖𝑇,𝑡, 𝑅𝑖𝑇,𝑡) − 𝛽̂𝑖𝑇,𝑡cov (𝑅𝑖𝑇,𝑡 , 𝑅𝑚𝑇,𝑡) − 𝛽̂𝑖𝑇,𝑡[cov (𝑅𝑖𝑇,𝑡 , 𝑅𝑚𝑇,𝑡) − 𝛽̂𝑖𝑇,𝑡cov (𝑅𝑚𝑇,𝑡 , 𝑅𝑚𝑇,𝑡)]

 = √∑  𝑇−1𝑇−1
𝑘=0  ∑  𝑢=0   [cov (𝑅𝑖1,(𝑡−𝑘), 𝑅𝑖1,(𝑡−𝑢)) − 𝛽̂𝑖𝑇,𝑡cov (𝑅𝑖1,(𝑡−𝑘), 𝑅𝑚𝑙,(𝑡−𝑢))].

   

(A.5) 
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and 

var (𝑅𝑚𝑇,𝑡 − 𝑅‾𝑚𝑇,𝑡) = cov (𝑅𝑚𝑇,𝑡, 𝑅𝑚𝑇,𝑡) = ∑  𝑇−1
𝑘=0 ∑  𝑇−1

𝑢=0 cov (𝑅𝑚𝑙,(𝑡−𝑘), 𝑅𝑚1,(𝑡−𝑢)).                 

(A.6) 

Therefore, co-skewness can be decomposed into sums of intertemporal cross-

covariance formed using unit-returns, by using A.4 in the numerator, and A.5 and A.6 

in the denominator. That is, co-skewness measured with longer-horizon returns is a 

function of the length of the horizon 𝑇, the intertemporal auto-covariance of asset 

unit returns and of market unit returns, the intertemporal cross-covariance between 

returns of the asset and the second-order of market returns, and the estimated 

betas at horizon 𝑇 : 

 

𝛾𝑖𝑇,𝑡 =
cov (𝜀𝑖𝑇,𝑡 , 𝜀𝑚𝑇,𝑡

2 )

𝜎(𝜀𝑖𝑇,𝑡) ⋅ var (𝜀𝑚𝑇,𝑡)

 =
∑  𝑇−1

𝑗=0  ∑  𝑇−1
𝑘=0  ∑  𝑇−1

𝑙=0  cov (𝑅𝑖1,𝑡−𝑗 , 𝑅𝑚𝑙,(𝑡−𝑘) ⋅ 𝑅𝑚𝑙,(𝑡−𝑙)) − 𝛽̂𝑖𝑇,𝑡 ∑  𝑇−1
𝑗=0  ∑  𝑇−1

𝑘=0  ∑  𝑇−1
𝑙=0  cov (𝑅𝑚𝑙,𝑡−𝑗 , 𝑅𝑚𝑙,(𝑡−𝑘) ⋅ 𝑅𝑚𝑙,(𝑡−𝑙))

√∑  𝑇−1𝑇−1
𝑘=0  ∑  𝑇−1

𝑢=0   [cov (𝑅𝑖𝑙,(𝑡−𝑘), 𝑅𝑖𝑙,(𝑡−𝑢)) − 𝛽̂𝑖𝑇,𝑡cov (𝑅𝑖𝑙,(𝑡−𝑘), 𝑅𝑚𝑙,(𝑡−𝑢))] ⋅ ∑  𝑇−1
𝑘=0  ∑  𝑇−1

𝑢=0  cov (𝑅𝑚𝑙,(𝑡−𝑘), 𝑅𝑚𝑙,(𝑡−𝑢))

.
       

(A.7) 

 

APPENDIX B: 

 

Proof of Proposition 2: the “Scaling Law” (Equation 5) 

 

 

Proof. There are four sums of covariance terms and a horizon-dependent beta 

estimate in the decomposition of co-skewness into terms relating to unit returns, 

according to Equation A.7: 

1. the sum of auto-covariances of asset returns, 

∑  

𝑇−1

𝑘=0

∑  

𝑇−1

𝑢=0

cov (𝑅𝑖1,(𝑡−𝑘), 𝑅𝑖1,(𝑡−𝑢)), 

which includes 𝑇 contemporaneous auto-covariances (corresponding to 𝑘 = 𝑢) 

and 𝑇(𝑇 − 1) intertemporal auto-covariances (when 𝑘 ≠ 𝑢 ) of asset returns. 

2. the sum of auto-covariances of market returns, 



 

 

38 

∑  

𝑇−1

𝑘=0

∑  

𝑇−1

𝑢=0

cov (𝑅𝑚𝑙,(𝑡−𝑘), 𝑅𝑚𝑙,(𝑡−𝑢)), 

which includes 𝑇 contemporaneous auto-covariances (corresponding to 𝑘 = 𝑢 ) 

and 𝑇(𝑇 − 1) intertemporal auto-covariances of market returns. 

3. the sum of cross-covariances between returns of asset 𝑖 and a second-order 

term using market returns, 

∑  

𝑇−1

𝑘=0

∑  

𝑇−1

𝑢=1

∑  

𝑇−1

𝑗=0

cov (𝑅𝑖1,𝑡−𝑘, 𝑅𝑚𝑙,(𝑡−𝑢) ⋅ 𝑅𝑚𝑙,(𝑡−𝑗)), 

which includes 𝑇 contemporaneous cross-covariances (corresponding to 𝑘 = 𝑢 = 𝑗 

), and 𝑇 ∗ 𝑇(𝑇 − 1) intertemporal cross-covariances. 

4. the sum of cross-covariances between market returns and a second-order term 

using market returns, 

∑  

𝑇−1

𝑘=0

∑  

𝑇−1

𝑢=1

∑  

𝑇−1

𝑗=0

cov (𝑅𝑚𝑙,𝑡−𝑘, 𝑅𝑚𝑙,(𝑡−𝑢) ⋅ 𝑅𝑚𝑙,(𝑡−𝑗)), 

which includes 𝑇 contemporaneous cross-covariances (corresponding to 𝑘 = 𝑢 = 𝑗 

), and 𝑇 ∗ 𝑇(𝑇 − 1) intertemporal cross-covariances. 

5. the beta estimate 

𝛽̂𝑖𝑇,𝑡 =
cov (𝑅𝑖𝑇,𝑡, 𝑅𝑚𝑇,𝑡)

var (𝑅𝑚𝑇,𝑡)
=

∑  𝑇−1
𝑘=0  ∑  𝑇−1

𝑙=0  cov (𝑅𝑖1,(𝑡−𝑘), 𝑅𝑚𝑙,(𝑡−𝑢))

∑  𝑇−1
𝑘=0  ∑  𝑇−1

𝑙=0  cov (𝑅𝑚𝑙,(𝑡−𝑘), 𝑅𝑚𝑙,(𝑡−𝑢))
, 

Given stationary returns and for unconditional estimates, the four contemporaneous 

covariance terms equal to cov (𝑅𝑖1,𝑡, 𝑅𝑖𝑙,𝑡), cov (𝑅𝑚𝑙,𝑡, 𝑅𝑚𝑙,𝑡), cov (𝑅𝑖1,𝑡, 𝑅𝑚𝑙,𝑡
2 ) and 

cov (𝑅𝑚𝑙,𝑡, 𝑅𝑚𝑙,𝑡
2 ), respectively and there are 𝑇 of each one of the these. 

In the "perfect market" proposed by Hawawini (1980b), securities display no 

intertemporal cross- and auto-correlations. In this case, beta is constant over all 

horizons, as documented by Hawawini (1980b), 

𝛽𝑖𝑇,𝑡 =
cov (𝑅𝑖𝑇,𝑡,𝑅𝑚𝑇,𝑡)

var (𝑅𝑚𝑇,𝑡)
= 𝛽𝑖1,𝑡 ⋅

𝑇+∑  𝑇−1
𝑠=1  (𝑇−𝑠)

𝜌𝑖𝑚,𝑡
+𝑠 +𝜌𝑖𝑚,𝑡

−𝑠

𝜌𝑖𝑚,𝑡

𝑇+2 ∑  𝑇−1
𝑠=1  (𝑇−𝑠)𝜌𝑚𝑚,𝑡

𝑠 = 𝛽𝑖1,𝑡.            (A.8) 
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Similarly, in the absence of the intertemporal cross- and auto-covariance terms 

described above, Equation A.7 can be rewritten as: 

𝛾𝑖𝑇,𝑡  =
cov (𝜀𝑖𝑇,𝑡,𝜀𝑚𝑇,𝑡

2 )

𝜎(𝜀𝑖𝑇,𝑡)⋅var (𝜀𝑚𝑇,𝑡)

 =
𝑇⋅cov (𝑅𝑖1,𝑡,𝑅𝑚1,𝑡⋅𝑅𝑚1,𝑡)−𝛽̂𝑖1,𝑡𝑇⋅cov (𝑅𝑚1,𝑡,𝑅𝑚1,𝑡⋅𝑅𝑚1,𝑡)

√𝑇⋅cov (𝑅𝑖1,𝑡,𝑅𝑖1,𝑡)−𝛽̂𝑖1,𝑡cov (𝑅𝑖1,𝑡,𝑅𝑚1,𝑡)⋅𝑇⋅cov (𝑅𝑚1,𝑡,𝑅𝑚1,𝑡)

 =
1

√𝑇
⋅ 𝛾𝑖1,𝑡.

            (A.9) 

That is, in contrast to the earlier findings of the horizon effect on betas in the 

literature, in a market where intertemporal cross- and auto-covariance terms are 

equal to zero, coskewness is still horizon dependent. In this extreme case, with the 

lengthening of the measurement horizon, unconditional coskewness converges to 

zero, highlighting a "scaling law" of co-skewness. 
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APPENDIX C: 

Robustness Check on Co-kurtosis 

 

In this paper, we focus on testing the sensitivity of stock co-skewness to the 

investment horizon. In light of the well-documented horizon dependence of the 2th  

order comoment and our findings relating to the 3𝑟𝑑 order comoment, it is 

reasonable to expect that higher-order comoments may also be horizon sensitive. 

Specifically, Fang and Lai (1997) and Dittmar (2002) suggest a four-moment capital 

asset pricing model by including co-kurtosis. Co-kurtosis is defined as the component 

of an asset's kurtosis that is related to the market portfolio's kurtosis. 

Similar to Kostakis et al. (2012), we estimate co-kurtosis as an extension to the co-

skewness measure of Harvey and Siddique (2000): 

𝛿𝑖𝑇,𝑡 =
𝐸[𝜀𝑖𝑇,𝑡𝜀𝑚𝑇,𝑡

3 ]

√𝐸[𝜀𝑖𝑇,𝑡
2 ]𝐸[𝜀𝑚𝑇,𝑡

3 ]
                                   (A.10) 

where 𝜀𝑖𝑇,𝑡 = [𝑅𝑖𝑇,𝑡 − 𝑅𝑓𝑇,𝑡] − [𝛼𝑖𝑇,𝑡 + 𝛽𝑖𝑇,𝑡(𝑅𝑚𝑇,𝑡 − 𝑅𝑓𝑇,𝑡)] is the residual 

previously extracted in Equation 1 from a CAPM regression and 𝜀𝑚𝑇,𝑡 is the 

deviation of the excess market return in month 𝑡 from the average over the 

corresponding window. 

Empirical results are shown in Table A.1. Panel A shows the estimated co-kurtosis for 

size deciles, which indicates the existence of the horizon effect on co-kurtosis. As 

shown in Panel B, the magnitude of the horizon effect on co-kurtosis, when 

measured using standard deviations and estimation bias, are also significant. While 

no obvious pattern is evident at short horizons, at longer horizons we provide 

evidence of decreasing co-skewness from the smallest to second largest portfolio. 

These findings shed further doubt on the empirical estimation of higher-order 

moments. 

TABLE A.1 ABOUT HERE 

 

These findings highlight the importance and potential implications of the horizon 

effect on asset pricing. Our detailed findings relating to the horizon effect on co-

skewness is not only a replication or sequel to those on alpha and beta, but also a 

pervasive concern with implications throughout many aspects of asset pricing. 
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APPENDIX D: 

Kraus and Litzenberger (1976) Co-skewness Estimates and Risk Premium 

 

Throughout this paper, we focus on the horizon effect on co-skewness estimated 

using the approach of Harvey and Siddique (2000). Earlier research, including 

Rubinstein (1973) and Kraus and Litzenberger (1976) also extend the static CAPM to 

nonlinear forms of the risk-return trade-off by considering systematic skewness. To 

ensure our findings are robust to the estimation method, we also examine whether 

higher-order comoments estimated using the approach of Kraus and Litzenberger 

(1976) are also sensitive to the measurement horizon. Accordingly, Kraus and 

Litzenberger (1976) co-skewness, 𝛾𝑖𝑀,𝑇
𝐾𝐿 , is a measure of systematic skewness of the 

risky asset 𝑖 with respect to the market portfolio 𝑀 and is given by 

𝛾𝑖𝑀,𝑇
𝐾𝐿 = 𝐶𝑖3(𝑅𝑖,𝑇 , 𝑅𝑀,𝑇) =

𝐸[(𝑅𝑖,𝑇−𝑅‾𝑖,𝑇)(𝑅𝑀,𝑇−𝑅‾𝑀,𝑇)
2

]

𝐸[(𝑅𝑀,𝑇−𝑅‾𝑀,𝑇)
3

]
                                                (A.11) 

Using the same sample, we test the horizon effect on Kraus and Litzenberger (1976) 

coskewness across 10 size deciles, as well as the three measures of estimation 

variation. Results are shown in Table A.2, indicating a consistent horizon effect. The 

magnitudes of the horizon effect on Kraus and Litzenberger (1976) co-skewness are 

also inversely related to the market capitalization, for all securities with greater 

expected trading delays than the weighted average trading delay in the market. 

Moreover, Kraus and Litzenberger (1976) co-skewness is a measure closer to the 

traditional definition of beta. Therefore, these estimates converge to 1 when returns 

of longer horizons are used. 

TABLE A.2 ABOUT HERE 

 

Furthermore, Andries et al. (2019) find "dynamically inconsistent preferences in 

which risk aversion decreases with the temporal horizon". Thus, it is reasonable to 

expect that decreasing risk aversion with longer horizon will impact on the risk 

premium for co-skewness. The Harvey and Siddique (2000) measure of co-skewness 

permits us to accommodate nonincreasing absolute risk aversion but not global risk 

aversion. Existing studies such as Post and Levy (2005) and Post et al. (2008) have 

shown significant evidence that co-skewness has minimal explanatory power after 

imposing risk aversion. In particular, Post et al. (2008) documented consistent 

findings across horizons. Therefore, although risk aversion and its impact on the 
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estimation of co-skewness across horizons is not our main focus, we replicate the 

test using the Kraus and Litzenberger (1976) co-skewness estimate, with results 

shown in Table A.3. 

 TABLE A.3 ABOUT HERE 

 

Following Post et al. (2008), we estimate the Euler equation for two different 

models. Given a cubic utility function, 𝑢(𝑥 ∣ 𝜃) = 1 + 𝜃1𝑥2 + 𝜃2𝑥3, the first model 

imposes no estimation restrictions requiring the value-weighted average of the 

pricing errors to equal zero: 

𝐦(𝜃)𝑇𝜏 =
1

𝑇
∑  𝑇

𝑡=1 𝐱𝑡
𝑇𝜏 + 2𝜃1

1

𝑇
∑  𝑇

𝑡=1 (𝐱𝑡
𝑇𝜏)2 + 3𝜃2

1

𝑇
∑  𝑇

𝑡=1 (𝐱𝑡
𝑇𝜏)3 = 0    (A.12) 

The second model adds the condition of risk aversion over the sample range, i.e. 

2𝜃1 + 6𝜃2𝑏+ ≤ 0 where 𝑏 + is the upper bound of the returns during the sample 

period. For each horizon, Table A.3 reports the estimated utility parameters (𝜃1 

and 𝜃2) for both models and the associated risk premiums (𝜌1 and 𝜌2) are 

computed as: 

𝜌1 ≡
−𝐸[𝑢′′(𝐱𝑇𝜏∣𝜃)]𝐸[(𝐱𝑇𝜏−𝜇𝑇𝜏)

2
]

𝐸[𝑢′(𝐱𝑇𝜏∣𝜃)]
=

−(2𝜃1+6𝜃2𝜇𝑇𝜏)𝐸[(𝐱𝑇𝜏−𝜇𝑇𝜏)
2

]

1+2𝜃1𝜇𝑇𝜏+3𝜃2𝐸[(𝐱𝑇)2]
,

𝜌2 ≡
−1/2𝐸[𝑢′′′(𝐱𝑇𝜏∣𝜃)]𝐸[(𝐱𝑇𝜏−𝜇𝑇𝜏)

2
]

𝐸[𝑢′(𝐱𝑇𝜏∣𝜃)]
=

−3𝜃2𝜇𝑇𝜏)𝐸[(𝐱𝑇𝜏−𝜇𝑇𝜏)
2

]

1+2𝜃1𝜇𝑇𝜏+3𝜃2𝐸[(𝐱𝑇)2]
.

            (A.13) 

Furthermore, the table reports the J-statistics which provide an indication as 

to whether the Euler equation holds. We analyze the efficiency of the 

market portfolio relative to our 10 size deciles over our sample period July 

1963 - December 2020. We compare the model that imposes the condition of risk 

aversion over the sample range, with the model without this restriction. Similar to 

the literature, using shorter-horizon returns results in significant evidence that 

when restricting the risk-aversion, the co-skewness premium approaches zero. 

However, we also find that when longer horizons (e.g. longer than 4-month) are 

considered, co-skewness has a smaller risk premium even if risk-aversion is 

not restricted. Adding the restriction of risk-aversion, while still approaching 

zero, has less impact on the co-skewness premium at long-horizons.11 This 

helps to reconcile our findings with the previous literature indicating that estimation 

of the co-skewness premium is highly dependent upon the empirical set-up. 

 
11 The null hypothesis of J-statistic is significantly rejected when 12M returns are used. 
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Table A.1 Co-kurtosis of size deciles across horizons  

 

 

Note: Co-kurtosis estimated using value-weighted portfolio returns and the market index are illustrated in Panel A. Stocks are allocated into 10 

size deciles based on NYSE breakpoints. Daily returns of stocks from August, 1962 to December, 2020 on the CRSP daily tape are used when 

estimating 1-day, 2-day, 5-day and 10-day co-kurtosis, and similarly monthly returns of stocks from the CRSP monthly tape are used to estimate 

1-month and longer-horizon co-kurtosis. The first, “Decile 1”, contains the smallest firms and the last, “Decile 10”, contains the largest. For each 

size decile and each horizon, we estimate co-kurtosis at each month from August 1977 to December 2020 using the previous 15-year period. 

This table details the average across all portfolio co-kurtosis estimates. In Panel B, the standard deviation, repeated measure ANOVA tests and 

estimation bias estimates, as in Equation 6, are used in detecting the magnitude of the horizon effect. ***, ** and * indicate that the null 

hypothesis that the estimates are equal to zero is rejected at the 99%, 95% or 90% level, respectively.  
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Table A.2 Co-skewness of size deciles across horizons. Kraus and Litzenberger (1976) 

 
Note: Kraus and Litzenberger (1976) co-skewness estimates using value-weighted portfolios returns and market index are illustrated in Panel A. 

Stocks are allocated into 10 size deciles based on the NYSE breakpoints. Daily returns of stocks from August, 1962 to December, 2020 on the 

CRSP daily tape are used when estimating 1-day, 2-day, 5-day and 10-day co-skewness, and similarly monthly returns of stocks on the CRSP 

monthly tape are used to estimate 1-month and longer-horizon co-skewness. The first, Decile 1, contains the smallest firms and the last, Decile 

10, contains the largest. For each size decile and each horizon, we compute the co-skewness estimate at each month from August 1977 to 

December 2020 using the previous 15-year periods. This table details the average across all portfolio co-skewness estimates. In Panel B, the 

standard deviation, repeated measure ANOVA tests and estimation bias estimates, as in Equation 6 are used in detecting the magnitude of the 

horizon effect. ***, ** and * indicate that the null hypothesis that the estimates are equal to zero is rejected at the 99%, 95% or 90% level, 

respectively.  
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Table A.3 Estimation results three-moment CAPM considering risk aversion. 

 

Note: We compare the model that imposes the condition of risk aversion over the 

sample range (No), with the model without this restriction (Yes) as suggested by 

Post et al. (2008). We estimate the parameters θ1 and θ1 of the cubic utility 

function u(x|θ ) = 1 + θ1x2 + θ2x3 using GMM method and calculate associated 

risk premiums (ρ1 and ρ2) as defined by Equation A.13. Our 10 size deciles over 

the sample period July 1963 - December 2020 are investigated. The table shows 

the GMM estimates for the parameters (p-values within brackets), the associated 

estimates for the risk premiums ρ1 and ρ2, and the J-statistics (p-values within 

brackets). J-statistic is used to test whether the null hypothesis (the pricing errors 

are equal to zero) is rejected to not. The null hypothesis of J-statistic is rejected 

when 12M returns are used. 

 


