Let K be a field and let $M_n(K)$ denote the space of $n \times n$ matrices over K. Define the symmetric bilinear f form on $M_n(K) \times M_n(K)$ by f(A, B) = Tr(AB), where Tr denotes the trace of a matrix. Given a subspace \mathcal{M} of $M_n(K)$ let \mathcal{M}^{\perp} denote the perpendicular subspace of \mathcal{M} .

We show that, for a suitable choice of subspace \mathcal{M} , \mathcal{M}^{\perp} sometimes has the property that it contains no elements of rank one or no elements of rank one or two. In particular, if K is a field such that $M_n(K)$ admits a subspace \mathcal{M} of dimension n in which each non-zero element of \mathcal{M} is invertible, \mathcal{M}^{\perp} contains no elements of rank one, and its dimension $n^2 - n$ is maximal.

We consider analogues of these constructions when we restrict the form f to the subspace of symmetric matrices and consider perpendicular spaces in this smaller space. Of special interest is the case of an *n*-dimensional subspace \mathcal{M} of symmetric matrices over a finite field K of odd characteristic in which each non-zero element is invertible. We discuss the rank of elements in \mathcal{M}^{\perp} for such an \mathcal{M} , distinguishing between when n is odd and n is even.