
Quantum simulation of an exotic quantum critical point in a
two-site charge Kondo circuit

Winston Pouse1,2,3†, Lucas Peeters3,4†, Connie L. Hsueh1,2,3, Ulf Gennser5, Antonella Cavanna5,
Marc A. Kastner2,4,6, Andrew K. Mitchell7,8∗, and David Goldhaber-Gordon2,4∗

1Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
2Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

3Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA
4Department of Physics, Stanford University, Stanford, CA 94305, USA

5 Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91120 Palaiseau, France
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Abstract—Tuning a material to the cusp between two distinct
ground states can produce physical properties that are unlike
those in either of the neighboring phases. Advances in fabrication
and control of quantum systems has raised the tantalizing
prospect of artificial quantum simulators that can capture
such behavior. A tunable array of coupled qubits should have
an appropriately rich phase diagram, but realizing such a
system with either tunnel-coupled semiconductor quantum dots
or metal nanostructures has proven difficult. The challenge
for scaling up to clusters or lattices is to ensure that each
element behaves essentially identically and the coupling between
elements is uniform, while also maintaining tunability of the
interactions. In this work, we study a nanoelectronic circuit
comprising two coupled hybrid metal-semiconductor islands,
combining the strengths of both materials to form a potentially
scalable platform. The semiconductor component allows for
controllable inter-site couplings at quantum point contacts, while
the metal component’s effective continuum of states means that
different sites can be made equivalent by tuning local potentials.
The couplings afforded by this architecture can realise an
unusual quantum critical point resulting from frustrated Kondo
interactions. The observed critical behaviour matches theoretical
predictions, verifying the success of our experimental quantum
simulation.

INTRODUCTION

The rich behaviors of bulk materials emerge from
microscopic quantum interactions among their many electrons
and atoms. When competing interactions favor different
collective quantum states, one can often tune from one
quantum state to another by applying pressure, electromagnetic
fields, or chemical doping. In principle this can even happen at
absolute zero temperature: a quantum phase transition [1, 2].
Remarkably, the zero-temperature quantum critical point
(QCP) at a specific value of a tuning parameter controls
behavior over a widening range of parameter values as the
temperature is increased, making signatures of criticality
experimentally accessible. Further, seemingly very different
systems can behave in the same ‘universal’ way near their
respective critical points.

A full microscopic description of the range and character of
different phases and the transitions between them is in most
cases impossible, given the sheer chemical complexity of real
bulk materials. Fortunately, simplified models often capture
the essential physics of interest, providing valuable insight
into the behavior of bulk materials and even guiding design
of new materials. Typically, these models describe a set of
local sites, each hosting one or a few interacting quantum
degrees of freedom, coupled to other sites and sometimes
to conducting reservoirs [3]–[6]. Calculating the low-energy
properties of even these simplified models on clusters of more
than a few sites exceeds the capabilities of the most powerful
classical computers. Digital quantum computers could work
for such calculations, but only once they are scaled to a far
greater number of quantum bits than the present state of the
art. Highly tunable nanoelectronic circuits based on one or a
few semiconductor quantum dots can act as analog quantum
simulators, directly implementing Hamiltonians of interest
and thus offering the near-term prospect of more powerful
computation than other currently available approaches. These

circuits display diverse phenomena including Coulomb
blockade [7], various Kondo effects [8]–[15], emergent
symmetries [16, 17], and fractionalization [18]–[21]. Quantum
phase transitions with universal properties have also been
realized in such circuits [18]–[20, 22, 23].

However, the circuits studied so far cannot fully capture
collective behavior over many sites of a lattice [24, 25]. A
long-standing goal is to scale up these circuits to more
directly mirror the structure of bulk materials. For example,
a four-site Fermi-Hubbard system was recently studied using
semi-automated control and tuning capabilities [26], but
scaling up to a larger uniform lattice is daunting. Even
with advanced modern fabrication, disorder in doping and
lithographic patterning can make the level spectra of two
nominally identical quantum dots inequivalent [27]. An array
of gates may be used to equalize local chemical potentials
across different sites, but many-body ground states are still
affected by the full level spectrum of each site [28], which
cannot be fully controlled in these systems.

A recently-introduced paradigm for quantum simulation of
quantum phase transitions is based on a local site formed
from a hybrid metal-semiconductor island [19, 20]. Here we
demonstrate that this approach is uniquely advantageous for
scaling to larger arrays: because the metal component hosts
an effective continuum of single particle states, different
islands of the same size behave essentially identically. As
a step toward scaling up such systems, the nature of the
coupling between neighboring islands must be understood.
In this article, we develop a model to describe the coupling
between islands in the simplest two-site system, and validate
this model experimentally using transport measurements. We
show that this device architecture generates an inter-site
interaction that favors a many-body coherent state in which
the islands are collectively screened by each other, and become
strongly entangled by a charge-Kondo effect. This interaction
competes with the usual island-lead interactions [19], which
favor separate Kondo screening of each island by its attached
lead [29]. The frustration between these interactions in a
system of two identical sites results in a QCP. Measured
conductance signatures across the quantum phase transition
– which is a variant of the long-sought two-impurity Kondo
(2IK) transition [30] – match universal theoretical predictions
for our model. Scaling up to many such coupled sites will
allow experimental simulation of lattice models that are
beyond the reach of traditional computational techniques.

Our device consists of a circuit containing two coupled
hybrid metal-semiconductor islands, each also coupled to
its own lead, as illustrated schematically in Fig. 1a. Even
though the islands are small enough to have a substantial
charging energy, the metal component endows each island
with an effective continuum of single particle states. This
contrasts with the discrete and individualized level spectrum
of pure semiconductor quantum dots noted above. Our circuit
is based on a GaAs/AlGaAs heterostructure which hosts
a buried two-dimensional electron gas (2DEG). Mesas are
lithographically patterned (blue regions in Fig. 1a, outside
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Fig. 1: Two island charge-Kondo device. a, Schematic layout of the device structure, consisting of two metal components (yellow-green)
coupled to quantum Hall edges (red lines) in a buried 2DEG (blue) via QPCs (black). The island constitutes the metal component and the
three surrounding patches of 2DEG on the inner side of the three QPCs. Only the top and central QPCs are used throughout this work.
The island levels are controlled via plunger gates (green). b, Three neighbouring charge states are interconverted by direct tunneling of
electrons at each of the three QPCs, characterized by transmissions τL, τR, τC . Distinct Kondo effects (illustrated as red ovals) arise along
each two-state degeneracy line. At the triple point connecting them, the three different Kondo interactions cannot simultaneously be satisfied,
leading to frustration and a quantum critical point. c, d, Experimentally measured series conductance and NRG calculations at 20 mK for
τL = τR ≡ τ = 0.38 (JL = JR ≡ J = 0.35) as the island potentials UL, UR are varied via plunger gate voltages PL and PR. The
top row corresponds to τC = 0.9 (JC = 0.5) and the bottom row τC = 0.7 (JC = 0.3). The bright conductance spots in the top row
correspond to the triple points. In the bottom row, the triple points are closer and somewhat merged. e, NRG calculated stability diagram
at the experimentally inaccessible temperature of 2 mK for the same settings as in d. Theory predicts clear Kondo-enhanced peaks at the
triple points, with Kondo-suppressed conductance elsewhere.

of which the 2DEG is etched away). The metal components
are deposited bridging the various mesas, then are electrically
connected to the 2DEG by thermal annealing. The combination
of metal and three surrounding patches of 2DEG form the
hybrid metal-semiconductor island. The device is operated in a
magnetic field of 4.3 T, corresponding to a quantum Hall filling
factor 2 in the 2DEG bulk; this provides robust, spin-polarized
conduction electron channels. The left and right islands are
designed to behave identically: the spacing of single-particle
states on each island is far below kBT at our base temperature
of 20 mK; and their charging energies EL

C ≈ ER
C ≈ 25 µeV

are equal to our experimental resolution (I ≈ 10 µeV is the
inter-island capacitive interaction). Lithographically patterned
metallic top gates form quantum point contacts (QPCs, black
in Fig. 1a). The transmissions τL and τR control the left
and right island-lead tunnel couplings, while τC controls the
coupling between the islands. Each coupling is through the

outermost quantum Hall edge state; QPC voltages are set
so that the second, inner channel, is completely reflected.
Throughout the experiment we fix τL = τR ≡ τ and keep
all other QPCs closed. Finally, plunger gates (green) control
the electrostatic potential, and hence electron occupancy, on
each island. We measure the conductance G from left lead to
right lead through both islands in series, as a function of the
left and right plunger gate voltages PL and PR. See Methods
for further details of the device and measurement setup.

We now formulate a model to describe our two-site device at
low temperatures below the island charging energies, and when
the QPCs are only partially open (that is, when kBT ≪ EL,R

C

and τ, τC < 1). Our low-energy effective model retains
only the lowest two macroscopic charge states of each island
(n = N or N + 1 electrons on the left island and m =M or
M + 1 electrons on the right island), giving four thermally
accessible charge configurations (n,m) for the two sites,



around a single pair of degenerate triple points (see the
experimental charge stability diagram in Fig. 1c, discussed
further below). Virtual excitations to higher charge states are
neglected. The two-level systems of retained charge states
on each island are mapped to charge pseudospins in the
effective model, which then takes the form of a modified
two-impurity Kondo model. The derivation (see Methods and
Supplementary Information) follows along similar lines to that
of the charge-Kondo mapping for a single island introduced
theoretically by Matveev and coworkers [29, 31, 32], and
validated experimentally by Iftikhar and coworkers [19, 20].
Our proposed double charge-Kondo (DCK) model reads,

HDCK =
(
JLŜ

+
L ŝ

−
L + JRŜ

+
R ŝ

−
R + JC Ŝ

+
L Ŝ−

R c
†
LcR +H.c.

)
+ IŜz

LŜz
R +BLŜz

L +BRŜz
R +Helec .

(1)

Here Helec describes the effectively independent conduction
electron reservoirs around each of the three QPCs, Ŝ+

L(R),
Ŝ−
L(R), Ŝ

z
L(R) are pseudospin- 12 operators for the lowest two

charge states of the left (right) islands, ŝ+L(R) and ŝ−L(R) are
pseudospin- 12 operators for the electronic reservoirs around
the left (right) QPCs, while c

(†)
L and c

(†)
R are fermionic

annihilation (creation) operators for island electrons to the left
and right of the central QPC. The first line of Eq. 1 describes
tunneling events at the three QPCs. The island-lead coupling
terms proportional to JL and JR favour Kondo screening of
the charge-pseudospin on the left and right islands by their
attached lead, whereas the term proportional to JC represents
the pseudospin coupling between the two islands, which is
correlated with electronic tunneling across the central QPC.
The term proportional to I describes the inter-island capacitive
interaction, while the local Zeeman pseudospin fields BL and
BR describe the effect of plunger gates PL and PR. See
Methods for further details of these terms.

The non-trivial physics of the model stems from the
specific form of the QPC couplings JL, JR and JC . The
physical origin of these terms is the tunneling of spin-polarized
conduction electrons onto and off the interacting islands.
We obtain a description in terms of the effective charge
pseudospin- 12 operators given in Eq. 1 by projecting our model
onto the reduced subspace of retained charge configurations
(N,M)/(N + 1,M)/(N,M + 1)/(N + 1,M + 1). For
the island charge states, processes that interconvert the
configurations (N,m) ↔ (N + 1,m) are described by the
left-island charge pseudospin raising or lowering operators
Ŝ±
L , whereas processes that interconvert (n,M) ↔ (n,M+1)

are described by the right-island charge pseudospin operators
Ŝ±
R . In terms of the conduction electrons, ŝ∓L describes

tunneling onto/off the left island from the left lead at the
left QPC (Methods). Similarly, ŝ±R corresponds to tunneling
at the right QPC. ŝ±L,R obey the standard spin- 12 operator
algebra, but the conventional “up” and “down” spin states
usually associated with those operators are here replaced
by the localization of an electron on the lead or the

island, respectively. Since each tunneling event (ŝ±α ) must
change an island’s occupancy (Ŝ∓

α ), charge pseudospin flips
necessarily accompany QPC tunneling. These island-lead
couplings are the same as those for the single-island setup
[19, 20, 29, 31, 32]: the correlated tunneling manifests as an
anisotropic Kondo interaction. The new ingredient here is
the inter-island coupling JC . Tunneling from the right island
to the left island at the central QPC via the term c†LcR is
accompanied by a simultaneous charge pseudospin flip of
both islands Ŝ+

L Ŝ−
R since the occupation of the left island

increases and the occupation of the right island decreases,
(N,M + 1) → (N + 1,M).

The DCK model is reminiscent of the 2IK model [30],
which captures the competition between Kondo screening of
local moments and RKKY exchange interaction. However, the
DCK model has a major difference: the inter-site coupling
is not a simple exchange interaction, but rather tunneling
combined with pseudospin flips on both sites (for a detailed
discussion of this term, see Methods). This turns out to favour
the formation of an inter-site Kondo singlet with many-body
entanglement, rather than the simple two-body local spin
singlet that would arise from RKKY or simple exchange.
When scaled to a lattice of sites, this interaction may produce
the lattice coherence effect seen in heavy fermion materials
but not so far accounted for in microscopic models [24].

A crucial feature of the present charge-Kondo
implementation is that the pseudospin couplings JL, JR
and JC are related directly to the experimental QPC
transmissions of the device τL, τR and τC , and can be large.
By tuning these couplings, one can realize various Kondo
effects, and indeed a QCP, at relatively high temperatures.
This contrasts with the more familiar coupling of spins
between two semiconductor quantum dots, where the
effective exchange interactions are perturbatively small.
Furthermore, the 2IK model is an oversimplified description
of real semiconductor double dot systems because it does not
account for charge transfer between leads, which is known
to destroy the QCP [33, 34]. Our two-island charge-Kondo
system therefore presents a unique opportunity to observe a
two-impurity QCP at experimentally relevant temperatures.

RESULTS

Phase diagram and Kondo competition

The island charging energies EL,R
C and inter-island

capacitive interaction I are finite in the physical device, so
multiple island charge states play a role. This gives rise
to a periodic hexagonal structure of the charge stability
diagram as a function of the left and right plunger gate
voltages PL,R. We convert these to energies UL,R = U0

L,R +
αPL,R using the experimentally measured capacitive lever
arm α = 50 µeV/mV, relative to an arbitrary reference U0

L,R.
UL,R are related to the pseudo-Zeeman fields BL,R in Eq. 1
via B⃗ = ᾱU⃗ , where U⃗ = (UL, UR), which accounts for
cross-capacitive gate effects.

The experimental stability diagram in Fig. 1c allows us
to identify regimes with particular charge states on the two



islands. In particular, we see distinct charge degeneracy
lines (N,M)/(N,M + 1), (N,M)/(N + 1,M) and (N +
1,M)/(N,M + 1), each of which is associated with single
electron tunneling at one of the three QPCs (see Fig. 1b).
This structure, including its characteristic gate periodicity,
is reproduced very well by numerical renormalization group
(NRG) [35, 36] calculations of the DCK model, generalized
to take into account multiple charge-states on each island
(see Methods). We fit JL,R,C for a given set of experimental
transmissions τL,R,C , as shown in Fig. 1d for the same
temperature T = 20 mK. We note that the periodicity of the
diagram extends over a larger range of gate voltages than
shown (see Supplementary Information).

Along the degeneracy line (N,M)/(N + 1,M) the left
island charge pseudospin is freely flipped by tunneling at
the QPC between the left island and lead, giving rise to a
Kondo effect due to the first term of Eq. 1. However, the
series conductance from left to right leads through the double
island structure is suppressed by this, since the conductive
pathway involves virtual polarization of the Kondo singlet
through the excited state (N,M + 1). This is supported
by NRG calculations at T = 2 mK (Fig. 1e) which show
a Kondo blockade’ [37] in the series conductance as the
temperature is lowered. A similar effect is seen along the
degeneracy line (N,M)/(N,M + 1), which corresponds
to a Kondo effect involving the right island and the right
lead. Along the degeneracy line (N + 1,M)/(N,M + 1),
tunneling with the leads is not involved. Instead we may
regard (N + 1,M) and (N,M + 1) as two components ⇐
and ⇒ of a collective pseudospin state of the double island
structure, which is flipped by electronic tunneling at the central
QPC. This gives rise to a kind of inter-island Kondo effect.
The resulting Kondo singlet is disrupted by tunneling at the
leads, and hence the conductance is again suppressed upon
lowering the temperature. The hexagonal structure of the
2D conductance plots as a function of gate voltage for our
two-site charge-Kondo system looks superficially similar to
that measured for conventional semiconductor double quantum
dot systems. However, the behavior in the vicinity of the triple
points is very different, as shown below.

Triple point

The triple point (TP), where the (N,M)/(N,M+1)/(N+
1,M) charge configurations are degenerate, is a special point
in the phase diagram. Here the three Kondo effects described
above are all competing, see Fig. 1b. At JL = JR = JC
in Eq. 1, the resulting frustration gives rise to a QCP,
which will be the main focus of this work. By contrast,
conventional semiconductor double quantum dots do not
support a QCP [33, 34] (see Supplementary Information for
a comparison of the two systems).

At the TP, the series conductance is enhanced because an
electron can tunnel from left lead to right lead through the
islands without leaving the ground state charge configurations.
A crude approximation treats the QPCs as three resistors
in series, and neglects electron interactions. In this case,

the maximum conductance of G = e2/3h arises when the
tunneling rates at each constriction are equal, JL = JR = JC ,
since then there is no bottleneck in the flow of electrons
through the structure. Interestingly, we observe the same
maximum conductance experimentally in our device at base
temperatures when the three QPCs are opened up, but here
in conjunction with critical behavior (to be discussed in
subsequent sections) absent in the series resistance model.
This indicates strong electron interactions, and is expected
from our analysis of the full DCK model: NRG calculations
confirm that the conductance is indeed capped at a maximum
value G = e2/3h. This arises at the TP at low temperatures
T/TK ≪ 1 when JL = JR = JC ≡ J∗, which corresponds to
the QCP. Here, we find TK ∼ EC exp[−1/νJ ] is the Kondo
temperature right at the QCP, with ν the electronic density of
states at the Fermi energy (Methods). We find from NRG that
the conductance G(T ) increases with decreasing T at the QCP,
approaching the critical value as e2/3h−G(T ) ∼ (T/TK)2/3.
Opening up the QPCs (large J) boosts the Kondo temperature
TK and means that the regime of small T/TK (and hence
G ≃ e2/3h) can be accessed experimentally at our base
temperature of 20 mK.

We speculate that the same DCK model (and hence the
same G = e2/3h maximum conductance) may be realized
in a system of two coupled large semiconductor quantum
dots – but only if the level spacing can be made very
small (≪ kBT ) such that transport between QPCs through
the dots is incoherent [38, 39] and if the dot states or
the QPC transmissions are fully spin-polarized. However,
these conditions are typically not met in conventional
semiconductor double quantum dot systems, whose maximum
series conductance is instead e2/h (or 2e2/h with spin
degeneracy). Our observed e2/3h maximum conductance is
thus already a distinctive feature of this setup.

Our theoretical analysis of the DCK model also reveals
an unusual residual T = 0 entropy of ∆S = ln(

√
3)

(Supplementary Information), establishing the QCP as a
non-Fermi liquid with exotic fractional (anyonic) excitations.
This entropic signature could in principle be observed
experimentally via the techniques introduced in Refs. [40, 41]

Conductance Line Cuts

We first focus on the behavior of conductance near the TPs.
Specifically, in Fig. 2a we take cuts along the line between
TPs, UL = UR ≡ U , for different τC at fixed τL = τR ≡ τ .
U = 0 is chosen to be the high-symmetry point between TPs.
Experimental data are compared with the corresponding NRG
simulations of the device in Fig. 2b. Since every pair of triple
points is indistinguishable (there are no even/odd occupancy
effects in the DCK system, unlike in semiconductor double
dots with spin), we extract the experimental line cuts of Fig. 2a
from averages over multiple pairs of triple points.

Experiment and theory are seen to match very well in
Fig. 2. At large τC > 0.7 (JC > 0.4) the positions of
the split conductance peaks are captured by the theory, and
at smaller τC (JC) the widths of the merged conductance
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Fig. 2: Conductance line cuts between triple points.
Experimentally-measured (a) and NRG-calculated (b) line cuts
for τ = 0.38 (J = 0.35 in the model) along the line UL = UR ≡ U
for different τC (JC ). Insets show representative 2D PL, PR sweeps
from which line cuts are extracted. The model parameters in b
are optimized to fit the experiment, and multiple charge states are
retained for each island (Methods).

peaks are also reproduced. We note that for the largest
transmissions τC ≥ 0.9, although the qualitative behavior
of the experimental line cuts are still captured by NRG, the
peak heights are underestimated. This is because a diverging
number of island charge states [29] contribute to transport as
τ, τC → 1, but only a finite number of these can be retained in
practice in the NRG calculations. The experimental quantum
simulator can therefore provide results in this regime that are
inaccessible to classical computation. Away from the limit of
perfect transmission however, our results validate the DCK
model as an accurate description of the physical device.

The TP positions in the space of (UL, UR) depend on τC ,
and at large τC are well separated such that they can be
easily identified from the conductance peak maxima. However,
even at the experimental base electron temperature of 20
mK, thermal broadening complicates the experimental analysis
of the TP behavior at small τC , where the TPs are close

together and the two conductance peaks are merged. Thus
care must be taken to estimate the TP positions from the
full stability diagram, and to disentangle the influence of
adjacent TPs. Estimates can however be validated from NRG
by going to much lower temperatures where the peaks sharpen
up (compare Figs. 1d and 1e).

We see clear non-monotonicity as a function of τC of the
maximum conductance in each line cut in Fig. 2a. This is a
good indicator that the TP conductance is also non-monotonic.
This is expected due to the competition between different
Kondo interactions controlled by τC , but would not be the
case for Fermi-liquid resistors in series. Taking the critical
point with completely frustrated interactions to be at τ∗C (a
monotonic function of τ but not necessarily τ∗C = τ , see
Supplementary Information), we expect lower conductance for
both τC > τ∗C and τC < τ∗C at low temperatures. This is
because in both cases the ground state is a Fermi-liquid Kondo
state, the formation of which blocks series transport across
the device. The island-lead Kondo effects, which dominate for
τC < τ∗C , renormalize the effective QPC transmissions [19] to
τ → 1 and τC → 0 on lowering the temperature. By contrast
the inter-island Kondo effect, which dominates for τC > τ∗C ,
renormalizes τ → 0 and τC → 1. Only when τC = τ∗C is the
low-temperature conductance Kondo-enhanced, because in this
case island-lead and inter-island Kondo singlets cannot form
simultaneously (all of the renormalized QPC transmissions
remain finite due to the frustration). We note that the
temperature-dependence of the conductance enhancement at
τC = τ∗C , as well as the conductance suppression away from
this point, have a non-trivial Kondo form characteristic of the
QCP, the latter of which we explore next.

Despite some uncertainty in the precise TP location, the
very existence of a QCP implies an underlying universality,
in terms of which conductance signatures in its vicinity can
be quantitatively analyzed.

Universal Scaling

We now turn to the behavior near the QCP, resulting from
frustrated island-lead and inter-island Kondo effects. We focus
on parameter regimes with large τ and τC , such that the
corresponding critical Kondo temperatures are large. This
allows experimental access to the universal regime T/TK ≲ 1.
At the QCP with τC ≃ τ∗C , our theoretical analysis predicts
G ≃ e2/3h. Moreover, non-trivial behavior is observed in the
vicinity of this singular point, where perturbations drive the
system away from the QCP and towards a regular Fermi
liquid state. The associated conductance signatures are entirely
characteristic of the quantum phase transition in this system.

Since the low-T physics near a QCP is universal and
therefore insensitive to microscopic details, we use a minimal
model, with only (N,M)/(N + 1,M)/(N,M + 1) states
retained in Eq. 1 (Methods). The QCP is destabilized by either
detuning the couplings, corresponding to the perturbation
∆τC = τC − τ∗C , or moving away from the TP via ∆U =
U−UTP (where UTP is the putative TP position). Remarkably,
we find from NRG that any combination of ∆τC and ∆U can
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Fig. 3: Universal conductance scaling near triple point. a, Line cuts along the triple point axis, starting at a given triple point and
moving away from the other. Each color/symbol corresponds to different τC for τ = 0.95 and T = 20 mK. T ∗ is determined from Eq. 3.
Since temperature is fixed, these fall on top of each other and the NRG calculated universal curve (solid line). Due to a finite detuning
∆τC , T ∗ > 0 even at ∆U = 0. This shift and the unknown prefactor b are left as free parameters in fitting the data to the universal
curve (Methods). b, Measured line cuts as in a, but at different temperatures (color/symbol) and plotted as a function of the single scaling
parameter T ∗/T (determined from Eq. 3) again demonstrating collapse to the universal theory curve. From lowest to highest temperatures,
τ = {0.78, 0.78, 0.81, 0.82} and τC = 0.9 (Methods). c, For the same temperature and τ, τC values of b, we now plot line cuts orthogonal
to the direction of those in b, which also demonstrate universal scaling collapse to the same theory curve (here we use Eq. 2 to determine
T ∗/T ). Further analysis is provided in Supplementary Information.

be captured by a single Fermi-liquid scale T ∗ characterizing
the flow away from the QCP toward a Fermi-liquid state,
provided the magnitude of the perturbations is small:

T ∗ = a|∆τC |3/2 + b|∆U |3/2 (2)

with a, b constants. We expect universal behavior of the system
as a function of T ∗/T when T ∗ ≪ TK . When T ∗/T ≫ 1,
the system is firmly within a Fermi-liquid regime, and in the
opposite limit the system is near the QCP. From NRG we can
calculate the universal conductance crossover as a function
of T ∗/T in the close vicinity of a TP. This is shown as the
solid lines in Fig. 3 and has asymptotic behavior e2/3h −
G(T ) ∼ (T ∗/T )4/3 for T ∗/T ≪ 1 and G(T ) ∼ (T ∗/T )−2

for T ∗/T ≫ 1 (see also Supplementary Information).
However, since Eq. 2 is calculated with the minimal DCK

model where each island is restricted to two charge states,
it cannot capture the full behavior of our experiment. The
DCK model contains a single pair of TPs, whereas the charge
stability diagrams of Fig. 1 exhibit a periodicity in gate
voltage space and feature repeated TP pairs. In particular,
starting at one TP and then increasing ∆U , we must eventually
encounter another TP. This implies a periodicity in the Fermi
liquid scale T ∗ that is not captured by the universal result
Eq. 2, which holds only for small values of the perturbation.
Phenomenologically, the simplest form to correctly capture
the observed periodicity, while also reducing to the known
behavior of Eq. 2 in the close vicinity of any given TP, is:

T ∗ = a|∆τC |3/2 + b| cos (2πU/δ)−∆TP |3/2 (3)

Here, δ is the spacing between pairs of triple points and ∆TP

is related to the splitting of the two triple points in a given
pair, such that ∆TP = cos (2πUTP/δ). We define U = 0

as being halfway between a pair of TPs, as in Fig. 2. In
fact, this periodic form of T ∗ was recently proved as an
exact result in the large τ, τC limit [42]. Remarkably then,
we can extend the notion of universality in this system to
include the periodic behavior seen over much larger ranges
of gate voltage. Conductance data of our device configured to
different τ , τC , U , and T should collapse to the same universal
curve when rescaled in terms of T ∗/T . Since the universal
curve only depends on the single scaling parameter T ∗/T , it
can be obtained by NRG for the DCK model (even though
these calculations are in practice done in the opposite limit τ ,
τC ≪ 1).

To confirm this experimentally, we must first identify the
TP position (∆U = 0), since this determines ∆TP . This is
relatively straightforward when the TPs are well separated,
which occurs when τC is large, and we simply take UTP as
the peak position. The overall gate periodicity δ is also easily
extracted from the experimental charge stability diagram. We
then determine T ∗ from Eq. 3 using U and τC from line
cuts similar to those of Fig. 2a for fixed τ = 0.95 and
T = 20 mK. The experimental data (symbols) collapse
to the NRG universal curve (line), as shown in Fig. 3a,
revealing the non-trivial 3/2 power law scaling in the data
(see Supplementary Information for further analysis). The
generalized periodic form of T ∗ in Eq. 3 is expected to hold
here since τ and τC are both large. Note that ∆τC here is not
in general zero, but the additive form of the contributions to
T ∗ from different perturbations means that any such detuning
in τC generates a finite T ∗ even when ∆U = 0. We account
for this by a simple shift when plotting the data in terms of T ∗.
The deviation from the universal curve at low T ∗ is attributed
to a finite T/TK , which simply means that the quantum critical



state is not fully developed at experimental base temperatures
even when T ∗ = 0.

We confirm the universality in Fig. 3b by measuring and
rescaling line cuts at different temperatures. Plotting the data
as a function of the universal parameter T ∗/T yields good data
collapse to the universal theory curve. At each temperature, τ
and τC are adjusted such that the conductance at ∆U = 0 is
roughly the same (we use somewhat smaller values of τ and
τC than in Fig. 3a). We do not expect to satisfy τC = τ∗C for
each set. Identifying the TP position is more complicated at
higher temperatures as thermal broadening smears the peaks,
so we extract δ and ∆TP at 20 mK, and use the same values
at higher temperatures (Methods).

The scaling collapse as a function of T ∗/T and
strong quantitative agreement with the non-trivial universal
conductance curve obtained by theory is both striking and
a direct signature of the critical point. Significantly, the
collapse is over the entire range of T ∗/T for each line cut,
with limitations only at small T ∗/T due to the finite T/TK
mentioned previously. We attribute the breakdown in scaling
for the data collected at the highest temperature of 75 mK to
be due to a breakdown of the assumption kBT ≪ EC , on
which the derivation of the DCK model relies.

In the case of the data presented in Fig. 3b, we comment
that the limit of large τ, τC is in fact not well satisfied. The
use of Eq. 3 here is reasonable but only conjecture. However,
our experimental results do suggest that Eq. 3 holds more
generally. This illustrates the power of quantum simulation to
obtain results beyond reach of other methods.

While most of this work has focused on line cuts along the
axis connecting triple points (UL = UR), in fact Eq. 2 holds
for gate detuning ∆U away from the TP in any direction in the
space of (UL, UR). In Fig. 3c we present line cut data along
the orthogonal direction, parallel to UL = −UR, for the same
couplings as plotted in Fig. 3b. The periodic structure of the
charge stability diagram is different along these cuts and so
we cannot use Eq. 3 (no simple form is known from theory).
However the effect of neighboring TPs and higher charge
states is less pronounced as ∆U is increased in this direction,
and so the simpler form of Eq. 2 is quite sufficient in practice.
We again see excellent data collapse to the universal theory
curve at all temperatures considered (and now even the 75
mK data). This further strengthens the sense of universality in
this system, since the same behavior is observed by perturbing
the QCP in different directions around the TP – an emergent
isotropy in gate space not present in the bare model.

DISCUSSION

In this work, we have presented strong evidence for a
quantum phase transition in a two-site circuit. By exploiting
the charge-Kondo paradigm, our device maps to a variant
of the celebrated two-impurity Kondo model, here featuring
a phase in which the local moments on the two islands
are screened collectively by many-body effects driven by
conduction electron scattering. This may have relevance for
the emergence of lattice coherence in Kondo lattice systems.

We formulate a model to describe the two-island
charge-Kondo device, and demonstrate quantitative agreement
between NRG calculations and experimentally measured
conductance, including in the universal regime of the exotic
quantum critical point.

Our work on the crucial role of the inter-island interaction
paves the way for a host of other studies. Opening each of
the islands to a second lead (already present but not used
in the existing device) would produce two sites each hosting
a two-channel Kondo (2CK) state at low temperatures [19].
Our existing device allows the coupling between two such
2CK states to be studied. Alternatively, by preparing a single
2CK state on one island, the associated Majorana zero
mode localized on that island [43, 44] could conceivably be
transferred to the other island by gate voltage tuning. This
could eventually allow for the manipulation and even braiding
of anyonic excitations arising from Kondo interactions in
nanoelectronic circuits.

Unlike for tunnel-coupled semiconductor quantum dots,
there is no clear roadblock to scaling this platform to
more complex uniform clusters of coupled charge-Kondo
islands, and ultimately lattices. This provides a way of
examining with unprecedented control some of the most
subtle collective dynamics of real correlated materials, and
introducing a flexible set of effective interactions. Such
scaled-up charge-Kondo clusters would act as analog quantum
simulators with capabilities beyond classical computation:
three coupled islands is already out of reach for NRG,
while stochastic algorithms such as Quantum Monte Carlo
(QMC) [6] may not be able to access the universal
low-temperature dynamics of these systems. Indeed, tunable
analog quantum simulators of this type may eventually form
the basis for calculations requiring solutions of complex
cluster models that are difficult to obtain using NRG or
even QMC, as arise for example as inputs to extensions of
dynamical mean field theory (DMFT) [45, 46] for correlated
materials such as the high-temperature superconductors.
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METHODS

Theoretical Modeling of the Device

Here we provide further details of our theoretical modeling
of the two-site device leading to the DCK model, Eq. 1
– see Extended Data Fig. 1. We also discuss the multiple
charge-state generalization and the minimal triple point model.
Further details can be found in the Supplementary Information.

The conduction electrons in the DCK system live in six
reservoirs in total, one on each side of each of the three
QPCs: one on the left lead, two on each island, and one
on the right lead. We treat the electrons on the islands as
forming an effective continuum because their level spacing
δ ≪ kBT even at the experimental base temperature T = 20
mK. Reservoirs denoted fαi and cα of island α = L,R are
treated within the model as being independent because of
the metal component separating them. Physically, electrons
can diffuse across each island through the metal component,
but this intra-island transport between QPCs is incoherent
precisely because δ ≪ kBT [38, 39]. Following Ref. [29], we
neglect this incoherent transport, and model fαi and cα in each
island as distinct electronic continua in the thermodynamic
limit. The physics is insensitive to the precise number of
electrons in these reservoirs since this number is very large.
Electrons in lead α = L,R are denoted fαl. See Extended
Data Fig. 1a for a schematic of the setup. The free conduction
electrons are described by Helec in Eq. 1, given by,

Helec =
∑
α,γ,k

ϵkf
†
αγkfαγk +

∑
α,k

ϵkc
†
αkcαk , (4)

where α = L,R (for left or right) and γ = l, i (for lead or
island). The dispersion ϵk describes the single-particle energy
of an electron with momentum k (all reservoirs are assumed
equivalent for simplicity, but this is inconsequential); we take
the density of states to be constant, ν = 1/2D, inside a band
of half-width D.

Electronic tunneling at the QPCs is described by,

HQPC =
∑

α=L,R

Jα

(
f†αlfαi +H.c.

)
+ JC

(
c†LcR +H.c.

)
, (5)

where the localized orbitals at the QPC positions are defined
as fαγ =

∑
k ζkfαγk and cα =

∑
k ζkcαk, with expansion

coefficients ζk. Tunneling events at the QPCs described by
HQPC change the charge-state configurations (n,m) of the
islands (here n (m) is the number of electrons on the left
(right) island). We denote the corresponding macroscopic
charge states of the islands as |n,m⟩, such that the number
operators for the left and right islands are given by,

N̂L =
∑

n,m n|n,m⟩⟨n,m| ,
N̂R =

∑
n,m m|n,m⟩⟨n,m| .

The island occupancies are then changed by ladder operators,

N̂±
L =

∑
n,m |n± 1,m⟩⟨n,m| ,

N̂±
R =

∑
n,m |n,m± 1⟩⟨n,m| .

See Supplementary Information for more details.
Using these operators, we describe the effect of the

gate-controlled local potentials as,

Hgate = BLN̂L +BRN̂R , (6)

and the effect of electronic interactions as,

Hint = EL
CN̂

2
L + ER

C N̂
2
R + IN̂LN̂R . (7)

The full microscopic Hamiltonian then follows as H = Helec+
HQPC +Hgate +Hint.

To obtain an effective charge-Kondo model from H , we
make two simple and well-controlled approximations – both
of which follow from the original charge-Kondo proposals
of Matveev and coworkers [31, 32]. First, we relax the exact
constraints that N̂α =

∑
k f

†
αikfαik+

∑
k c

†
αkcαk, and promote

N̂L and N̂R to independent quantum degrees of freedom. This
is a good approximation when the islands host a very large
number of electrons in a quasi-continuum, since the dynamics
of N̂L and N̂R should in this limit be unaffected by the
precise number of electrons on the islands (that is, the physics
is controlled by changes in the occupations rather than the
occupations themselves). This limit is well satisfied in practice
by the experimental setup. In this case we replace fαik →
fαikN̂

−
α and cαk → cαkN̂

−
α . The second approximation is to

project the the full Hamiltonian H onto a reduced subspace of
thermally accessible island charge configurations to obtain an
effective model Heff = P̂ ĤP̂ . This is a valid approximation
at low temperatures kBT ≪ EL,R

C provided the QPCs are
not opened up (a macroscopic number of charge states are
involved near perfect transmission [29], so we additionally
require νJL,C,R ≪ 1 for the projection step).

DCK Model: The DCK model, Eq. 1, is obtained (up to
an irrelevant constant) by following the above steps, when we
retain only the charge configurations (n,m) with n = N or
N + 1 and m = M or M + 1. That is, HDCK = P̂ ĤP̂ with
the projector,

P̂ = |N,M⟩⟨N,M |+ |N + 1,M + 1⟩⟨N + 1,M + 1|
+ |N + 1,M⟩⟨N + 1,M |+ |N,M + 1⟩⟨N,M + 1| .

We now introduce pseudospin- 12 raising/lowering operators to
describe transitions between the two retained charge states of
each island,

Ŝ+
L =

∑M+1
m=M |N + 1,m⟩⟨N,m| ,

Ŝ+
R =

∑N+1
n=N |n,M + 1⟩⟨n,M | ,

and with Ŝ−
α = (Ŝ+

α )†. We also define,

Ŝz
L =

∑M+1
m=M

1
2 [|N + 1,m⟩⟨N + 1,m| − |N,m⟩⟨N,m|] ,

Ŝz
R =

∑N+1
n=N

1
2 [|n,M + 1⟩⟨n,M + 1| − |n,M⟩⟨n,M |] .

The effective DCK model then reads,

HDCK =
(
JLŜ

+
L f

†
LifLl + JRŜ

+
Rf

†
RifRl

+ JC Ŝ
+
L Ŝ−

R c
†
LcR +H.c.

)
+ IŜz

LŜz
R +BLŜz

L +BRŜz
R +Helec .

(8)



We obtain Eq. 1 by further defining the pseudospin- 12 operators
ŝ−α = f†αifαl and ŝ+α = (ŝ−α )

†.
Minimal Model at TP: At the TP, we can further project

the model onto the restricted three-dimensional subspace of
charge configurations |A⟩ = |N,M⟩, |B⟩ = |N + 1,M⟩ and
|C⟩ = |N,M + 1⟩ using the projector P̂ =

∑
ξ=A,B,C |ξ⟩⟨ξ|.

This leads to a minimal model valid close to the TP,

HTP =
(
JLŝ

−
L |B⟩⟨A|+ JC ŝ

−
C |C⟩⟨B|+ JRŝ

−
R|A⟩⟨C|+H.c.

)
+Hleads +Hgate ,

(9)

where we have additionally defined ŝ−c = c†RcL, and Hgate =∑
ξ=A,B,C ∆Uξ|ξ⟩⟨ξ| describes gate-voltage detuning away

from the TP. The QCP is realized by setting JL = JC = JR ≡
J and Hgate = 0 in Eq. 9, and is illustrated schematically in
Extended Data Fig. 1b. Finite Hgate then generates a Fermi
liquid crossover on the scale of T ∗ as discussed in the main
text. Eq. 9 is solved by NRG and used to obtain the universal
conductance curves near the TP shown in Fig. 3, and to extract
numerically the dependence of TK on J as mentioned in the
main text.

At the QCP of the DCK model, enhanced series
conductance between leads proceeds via the following
mechanism (see blue arrows in Extended Data Fig. 1b). We
start from the charge configuration |A⟩ = |N,M⟩. First, an
electron tunnels from the left lead (fLl) onto the left side of the
left island (f†Li), thus flipping the left island charge pseudospin
from “down” to “up” (S+

L , meaning N → N + 1). This
converts |A⟩ → |B⟩. In the second step, an electron tunnels
from the right side of the left island (cL) at the central QPC
to the left side of the right island (c†R). This simultaneously
lowers the charge pseudospin of the left island back to “down”
and raises the charge pseudospin of the right island to “up”
(S−

L S+
R , meaning N + 1 → N and M → M + 1). This step

converts |B⟩ → |C⟩. In the final step, an electron tunnels
from the right side of the right island (fRi) onto the right
lead (f†Rl), which also flips the charge pseudospin on the
right island back to “down” (S−

R , meaning M + 1 → M ).
Overall an electron is transferred from the left lead to the
right lead, but the device charge configuration has been “reset”,
|C⟩ → |A⟩, ready for transfer of the next electron. In the DCK
model, U(1) charge is separately conserved in each of the
three ‘channels’ fLl/fLi, fRl/fRi, and cL/cR (whereas only
a global U(1) symmetry applies in the physical device). The
transport mechanism described above leaves an extra electron
in fLi and cR and an extra hole in cL and fRi. Overall charge
conservation is still maintained, as this is enforced by the
charge pseudospin dynamics of SL and SR. The generation
of particle-hole pairs in the island reservoirs is irrelevant for
the pseudospin dynamics because the island reservoirs are
treated as electronic continua in the thermodynamic limit, and
calculations are performed in the grand canonical ensemble.

Generalized Multi-Level DCK Model: To capture the
periodicity in the experimental charge stability diagram
(Fig. 1c) and to relax the constraints kBT ≪ EL,R

C and
νJL,C,R ≪ 1, we can include more than just two charge

states of each island in our projection to the effective model.
This is important for making quantitative comparisons with
the experimental results in Figs. 1 and 2. In particular, the
experiment is not confined to small pseudospin coupling.

The generalized DCK model Hgen = P̂HP̂ is obtained
using the projector

P̂ =
∑N+N̄+1

n=N−N̄

∑M+M̄+1
m=M−M̄ |n;m⟩⟨n;m| .

Here N and M are reference fillings, while N̄ and M̄
determine the number of included island charge states. Up
to irrelevant constants, the result of the projection is,

Hgen =
(
JLŜ

+
L ŝ

−
L + JRŜ

+
Rŝ

−
R + JC Ŝ

+
L Ŝ

−
Rc

†
LcR +H.c.

)
+ EL

C(N̂L −N − 1
2 )

2 + ER
C (N̂R −M − 1

2 )
2

+ I(N̂L −N − 1
2 )(N̂R −M − 1

2 )

+BLN̂L +BRN̂R +Helec ,

(10)

where now we have:

Ŝ+L =
∑N+N̄

n=N−N̄

∑M+M̄+1
m=M−M̄ |n+ 1,m⟩⟨n,m| ,

Ŝ+R =
∑N+N̄+1

n=N−N̄

∑M+M̄
m=M−M̄ |n,m+ 1⟩⟨n,m| ,

and with Ŝ−α = (Ŝ+α )†.
Eq. 10 reduces to the DCK model Eq. 1 for N̄ = M̄ =

0 when only two charge states are accessible per island. By
contrast, the effect of the projection is entirely removed by
taking the formal limit N, N̄,M, M̄ → ∞. The generalized
model therefore allows to interpolate between these limiting
cases by tuning N̄ and M̄ . Although a relatively small number
of charge states can be retained for numerical calculations in
practice (see below for details), one can check post hoc that
results are converged with respect to increasing N̄ and M̄ for
a given set of physical model parameters.

NRG calculations

To simulate the experimental two-island charge-Kondo
device using NRG [35, 47], we employ the effective models
developed above. Universal results near the critical TP
presented in Fig. 3 of the main text were obtained by NRG
using Eq. 9. Figs. 1 and 2 feature NRG results using the
generalized multi-level model Eq. 10, which allows to capture
the full phase diagram and gate-voltage periodicity.

NRG involves discretizing the conduction electron
Hamiltonian Helec logarithmically, mapping to semi-infinite
tight-binding Wilson chains, and diagonalizing the discretized
model iteratively. Ns of the lowest energy states are retained
at each step, resulting in an RG procedure which reveals the
physics on progressively lower energy scales [35, 47].

Standard NRG cannot be used in our case, however, due
to the complexity of the models at hand, with 6 spinless
conduction electron channels. Instead, we use the ‘interleaved
NRG’ (iNRG) method [36, 48], which involves mapping Helec

to a single generalized Wilson chain. This dramatically lowers
the computational cost of such calculations, and brings the
numerical solution of the models within reach. For all iNRG
calculations presented in this work, we use a logarithmic



discretization parameter Λ = 4, retain Ns = 35000 states at
each iteration, and exploit all abelian quantum numbers. When
using the generalized model Eq. 10 we used N̄ = M̄ = 7,
corresponding to 16 retained charge states per island. By
contrast, the universal critical physics of the TP can be
obtained from Eq. 9, retaining just 3 charge states for the
entire two-site system.

The experimental quantity of interest is the series dc linear
response differential conductance,

G =
dI

dVb

∣∣∣∣∣
Vb→0

(11)

where we take I = −e⟨ṄRl⟩ to be the current into the
right lead due to a voltage Vb applied to the left lead. Here
ṄRl =

d
dtN̂Rl and N̂αl =

∑
k f

†
αlkfαlk. An ac voltage bias

on the left lead can be incorporated by a source term in the
Hamiltonian, Hbias = −eVb cos(ωt)N̂Ll, where ω is the ac
driving frequency. The dc limit is obtained as ω → 0.

The geometry of the device means that the conductance
cannot be related to a spectral function. Instead we use the
Kubo formula [49],

G =
e2

h
lim
ω→0

−2π ImK(ω)

ω
, (12)

where K(ω) = ⟨⟨ṄLl; ṄRl⟩⟩ is the Fourier
transform of the retarded current-current correlator
K(t) = −iθ(t)⟨[ṄLl, ṄRl(t)]⟩. Within iNRG, ImK(ω)
may be obtained from its Lehmann representation using
the full density matrix technique [50]. The numerical
evaluation is substantially improved by utilizing the identity
ImK(ω) = ω2Im⟨⟨N̂Ll; N̂Rl⟩⟩ [51]. We use iNRG to
calculate the conductance through the device from Eq. 12 at
a given temperature T , as a function of BL and BR.

Although NRG employs a discretized representation of the
conduction electron part of the model Helec (the Wilson
chains), the renormalization group structure of the model
is exploited in NRG to nevertheless obtain highly accurate
approximations to the exact continuum result for equilibrium
physical quantities [35, 47, 50].

Device

The device was fabricated on a GaAs/AlGaAs
heterostructure with a 2DEG approximately 95nm
deep, density of 2.6 × 1011 cm−2 and mobility
2.0× 106 cm2V−1s−1. An SEM micrograph of an equivalent
device is shown in Extended Data Fig. 2. High transparency
of the small ohmic contacts is crucial, so we take special
steps to ensure cleanliness of the interface with the GaAs
heterostructure. Before any fabrication is done on the
heterostructure, we dip in HCl 3.7% to remove any oxide
layer that has built up. After writing the ohmic layer pattern
using e-beam lithography and developing the PMMA resist,
we use a light oxygen plasma etch to remove residual PMMA
scum. Next, before evaporating the ohmic stack, we use the
following chemical treatment procedure: dip in TMAH 2.5%

for 20 seconds, 5 seconds in water, 5 seconds in HCl 37%,
5 seconds in water (separate from the first cup of water).
Afterwards, we quickly move the chip into a KJL Lab 18
e-beam evaporator (with a load-lock), and pump down to
∼ 10−6 torr vacuum. Reducing the time in air is important
to prevent substantial oxide layer growth. Finally, we run a
low-power in-situ Argon etch for 20 seconds. Only after this
do we evaporate the ohmic stack (107.2 nm Au, 52.8 nm Ge,
and 40 nm Ni, in order of deposition).

Experimental Setup

The device was cooled down with a +300 mV bias on all
the gates to reduce charge instability by limiting the range
of voltages we need to apply [52]. To reduce thermoelectric
noise causing unwanted voltage biasing across the device, each
lead has a central ohmic contact (between the source and
measurement contacts) and all those central ohmics are shorted
to each other on chip. The shorted ohmics are connected to a
single line and grounded at room temperature. Measurements
are made at low frequencies (< 100 Hz) using an SR830
lock-in amplifier. The 14 mV output of the SR830 is converted
to a current bias using a 100MΩ resistor, and the current
is then converted to a voltage on chip by the quantum
Hall resistance (h/2e2). A measurement of either the series
transmitted voltage or the reflected voltage is amplified by an
NF SA-240F5 room-temperature voltage amplifier. The series
conductance of interest can then be simply extracted from this
voltage as explained below. For most reported measurements,
we source at S2 and measure at M2 (see Fig. 1a). The series
conductance is then related to the reflected voltage, V2 by
Eq. 13.

G =
e2

3h

V2 − V
τR,L,C=0
2

V
τR,L,C=1
2 − V

τR,L,C=0
2

(13)

Measurements in this way eliminate the need for precise
knowledge of many settings in a given setup – excitation
amplitude, amplifier gain, line resistances, etc. For arbitrary
sourcing and measurement configurations, the relations
between measured voltages and the desired conductances
can be calculated straightforwardly through Landauer–Büttiker
formalism.

Electron Temperature

The electron temperature is determined from dynamical
Coulomb blockade measurements outlined in Iftikhar [53]. The
zero bias suppression of the conductance across a QPC when
series coupled to another QPC of low resistance can be fit
to a known theoretical form which directly depends on the
electron temperature [54]. In our device we measure through
two QPCs across a single island (τC = 0), with one QPC
partially transmitting and the other set to fully transmit a single
edge mode.

Calibrating QPC Transmissions

A standard procedure to measure the transmission of each
QPC is to measure the series conductance while varying the
applied gate voltage of the QPC, with each other QPC set



to fully transmit n edge states, acting as an h/ne2 resistor.
For our experiments of central interest, we must then adjust
each QPC to a desired transmission. We cannot naively use
the gate voltages that produced that transmission with all
other QPCs open, because changing the voltage applied to
any gate capacitively affects all other QPCs. However, we
can calibrate this capacitive effect by measuring how much
each QPC’s transmission curve shifts as we vary each other
QPC’s gate voltage by a known amount. This is done for
each pair of QPCs we use in the experiment, and with this
information we can systematically determine the appropriate
gate voltages to set. However, even this procedure fails in
our device. When transmission is measured in series through
a QPC and an additional resistance on order h/e2, dynamical
Coulomb blockade (DCB) suppresses the conductance relative
to that expected from ohmic addition of the ‘intrinsic’
transmissions [54]–[64]. The ‘intrinsic’ transmissions can be
recaptured by applying a source-drain bias large compared to
a relevant charging energy (Extended Data Fig. 3a).

Alternatively, a measurement pathway which does not
go through the metal island (for example, measuring τR
through the plunger gate PR) effectively shorts the circuit
to ground, so the ‘intrinsic’ transmission is recovered even
at zero source drain bias [56, 65]. The measured QPC
transmission at low bias avoiding the island should then
be the same as the measurement at high bias through the
island. Empirically, this is not the case in our device. Instead,
repeating the measurement through PR at high bias shows
exact agreement with the high bias measurement through
the island. Bias-dependent measurements through PR show a
zero-bias suppression and a high bias plateau of conductance
consistent with DCB suppression, contrary to expectation that
DCB should be negligible in this configuration (Extended Data
Fig. 3c).

We suspect that this residual DCB effect is due to
impedances in our measurement setup, external to the device.
We connect our measurement lines which ground the device
through highly resistive coaxial lines and discrete filters
located right above the connection to the sample through large
ohmic contacts. This is in contrast to earlier work ([19, 20]) on
this type of system in which a cold ground is used, effectively
creating a very low impedance path to ground.

The important question is which measurement transmission
is relevant for the Kondo interactions. While previous
work ([19, 20]) found the difference between the ‘intrinsic’
transmission and the zero bias transmission through an open
plunger gate to be small, and thus both equally valid, we find
that the measurement through PR at zero bias empirically
works best in our device. Without any residual DCB, we
believe this should be the exact same as the ‘intrinsic’
transmission. However, the residual DCB appears to not only
suppress the measured QPC transmissions, but all measured
conductances of our system in any configuration, at zero
bias. In particular, when measuring through either one or
both islands, the conductance when using the ‘intrinsic’
transmission at charge degeneracy points, where Kondo

interactions are most important, is consistently lower than
both expectations and previous results seen in [19]. With the
single island, we see a suppression consistent with DCB: the
series conductance we measure at a Coulomb blockade peak
is lower than that measured in [19] for the same ‘intrinsic’
transmissions and temperature, with the smallest differences in
conductances being near the maximum (0.5 e2/h) or minimum
(0 e2/h) possible conductances. Furthermore, the differences
reduce at higher temperatures. These two features are similar
to that seen in DCB measurements.

If instead we use not the ‘intrinsic’ transmission,
but the zero bias transmissions through PR, we see
remarkably consistent agreement with previous measurements
of the two-channel Kondo model for different transmissions
and temperatures. Our interpretation is that while both
Kondo and DCB renormalize conductance, we can work
in a ‘DCB-renormalized space’ by explicitly setting the
DCB-renormalized transmissions. These DCB-renormalized
transmissions then act as the transmissions that are in turn
important for the Kondo interactions. Importantly, we must
use the transmissions measured in an environment in which
the QPC sees the same electromagnetic impedance as in the
measurements of interest. This means using the zero bias
transmissions measured through PR, where DCB is caused
by only the external impedances, and not the zero bias
transmissions measured through the island, where there is
additional suppression due to the resistance of the second QPC
in series.

On the left island, the QPC we use does not have an
adjacent pathway through PL, but due to an equivalence of
the island-lead QPCs, a consistent mapping can be made
from the ‘intrinsic’ transmission to the DCB-renormalized
one that would be measured through the plunger gate.
However, we are unable to make this mapping for
the inter-island QPC as we observe differences in the
DCB-renormalization when measured through the islands
(Extended Data Fig. 3b). Likewise, we are unable to measure
the extraneous DCB-renormalization of the inter-island QPC
due to the device geometry. In our results in the main
text, we therefore report ‘intrinsic’ values for τC and the
DCB-renormalized values (measured through PR) for τ . This
may be why the maximum conductance does not appear at
τ = τC , and in any case it means that the τC relevant for
Kondo physics grows with increasing temperature.

The conclusions of the main text are not sensitive to the
choices described above regarding which values (‘intrinsic’
or DCB-renormalized) we report for each QPC transmission.
None of our results rely on precise quantitative knowledge of
the transmission settings, since T ∗ depends only on detuning
of one transmission relative to another. This would not be
the case in any future work exploring universal scaling as
a function of T/TK , since TK depends directly on the
quantitative transmissions.



Fitting universal curves

To calculate | cos 2πU/δ − ∆TP |3/2 and thus T ∗ first
requires extracting δ,∆TP . As mentioned in the main text,
these relate to the triple point periodicity and splitting
respectively. The data of Fig. 3 are extracted from charge
stability diagrams over larger gate voltage ranges like in
Fig. 1c. The line cuts of Fig. 3a specifically come from
averages over multiple pairs of triple points, whereas the rest
of Fig. 3 uses singular line cuts. Using either line cuts from the
the full stability diagram or from other stability diagrams taken
with the exact same τ, τC values, we can extract δ and ∆TP .
There is uncertainty in the triple point splitting, as identifying
the triple points is non-trivial, which we will discuss further
below. Finally, we must also determine the unknown scaling
prefactor b of Eq. 2. We do this by least-squares fitting
b| cos 2πU/δ − ∆TP |3/2 of the experimental data to T ∗ of
the universal curve, with b as a free parameter. Each τC line
cut is independently fit, and we average the resulting b values
and apply the same rescaling to each curve. We find b = 1 mK
works best. A similar procedure is done in Fig. 3b, except we
fit only the 20 mK data to the fully universal curve, obtaining
b = 3.7 mK. The elevated temperature data are then rescaled
with that same obtained b. For every curve, we also fit a
constant shift a|∆τC |3/2 to take into account that there is
a finite T ∗ even at ∆U = 0 due to a detuning from the
critical couplings. These fits exclude the first few data points
at the lowest T ∗, where we do not expect agreement with the
universal curve due to a finite T/TK (with TK the critical
Kondo temperature as before).

In Extended Data Fig. 4a, we show the τC values used in the
scaling collapse data of Fig. 3a in the main text. To resolve
the TP peaks we need a sufficiently large τC , of which the
value needed grows with τ . To reach a conductance close to
e2/3h and have split triple points, τC must be made extremely
close to 1. While one might guess that the resulting measured
line cuts would be essentially identical, we see that in the full
shape (Extended Data Fig. 4b) there are large changes to the
line cuts even for tiny changes in τC ∼ 1. Contrast this with
Fig. 2a of the main text where τC is far from 1, large changes
in τC are needed for comparable changes in the line cuts.

In Fig. 3b, to roughly match the conductance at ∆U = 0
across different temperature, we adjust the transmissions at
each temperature. If the transmissions were instead held
constant, the conductance would decrease with increasing
temperature due to a larger T/TK . By increasing τ, τC
with temperature, T/TK is maintained roughly constant. In
our measurement, τ = {0.78, 0.78, 0.81, 0.82} at T =
{20, 26, 46, 75} mK while τC = 0.9 for all T . As described
in the Calibrating QPC Transmissions section of Methods, we
know that this corresponds to a slightly increasing τC with
temperature, although the exact variation is unknown. That
τC varies between temperatures does not affect the conclusion,
since the scaling as a function of ∆U is unaffected.

Finally, as previously mentioned, in some cases the TPs
are not easily identifiable, depending on τ and τC . Though

in Fig. 3 we try to choose line cuts in which the TPs are
relatively well separated, it is not always possible depending
on the couplings and temperature. By using NRG calculations
at extremely low temperatures to determine the TP locations
and comparing them to the location of the conductance peaks
at higher temperatures, we can estimate the difference between
conductance peak and TP position. We find from our NRG
calculations that choosing a point ∼ 1 µeV away from the
peak conductance for the two lowest temperatures of Fig. 3b,
∼ 2 µeV away for the 46 mK data, and ∼ 10 µeV away for
the 75 mK data is a good approximation. The large offset
of the 75 mK data is simply due to there only being a
single conductance peak centered between the two TPs at this
temperature. We find that this set of offsets is equivalent to
what we would obtain by assuming the triple point splitting,
and thus ∆TP , is constant for all the temperatures, which is
valid since τ, τC do not vary much between them. For all of
the data used in Fig. 3a, where the TPs are well separated,
we find that using the conductance peak location as the TP
location is a good approximation. Due to a combination of an
imperfect identification of the TP location and finite spacing
of measurements in gate voltage, there will still be some error
in choosing the true TP location. We estimate this uncertainty
in ∆U to be ∼ 0.25 µeV for all data taken at the two lowest
temperatures, and ∼ 1 µeV for the two higher temperatures.
Though any uncertainty in ∆U creates a non-linear error when
scaling ∆U to T ∗, we find that changes within the uncertainty
of where we set ∆U = 0 do not significantly change our
results. We see this by offsetting ∆U and redoing the same
scaling collapse analysis.

For the orthogonal line cuts, we instead fit the scaling
prefactor b in Eq. 2 of the 20 mK data to the universal curve,
finding b = .0086 mK/µeV3/2. As in the parallel line cuts, all
higher temperatures use the same prefactor.

Metal-2DEG Interface

To apply our model to our experimental system, the edge
modes in the 2DEG transmitted through a quantum point
contact must then be perfectly transmitted into the metal
component. For this to occur, first, the edge mode must not
bypass the metal. To enforce this, following Iftikhar ([19]),
trenches are etched in the 2DEG below the island so the metal
is the only conducting path bridging otherwise separate regions
of 2DEG on different mesas. Second, reflection of the edge
mode from the metal must be minimal. We verify near-perfect
transmission by relating measured voltages to the transmission
into the metal τR,L

Ω . In principle it is possible to extract
the separate transmission probabilities for each metal-2DEG
interface, but here we report an average. Unlike in the work
of Iftikhar ([19]), we find we must take into account the
non-negligible resistance to ground in our setup – through
cryostat lines and filters intended to maintain low electron
temperature – which generates a finite transmitted voltage



V τi=0
T , even with all QPCs closed.

V
τR(L),4(3)=1,τC=0

2(1) − V τi=0
T

V τi=0
2(1) − V τi=0

T

= 1− τ
R(L)
Ω /4 (14)

Here τ3,4 are the unused QPCs in our experiment, representing
the transmissions of the bottom QPCs of the left and right
islands respectively. In our device, we measure

τRΩ = 1.0004± 0.0098 τLΩ = 0.9947± 0.0417

There is a much larger uncertainty on the left island, due to a
noisier measurement contact M1.

Measurement Uncertainty

A few factors contribute to uncertainty in the reported
conductance. Due to slow drift in the electric potential, we
cannot reliably sit at the same position in the charge stability
diagram. This reduces the ability to average over time at
a particular configuration of PL, PR. Based on the standard
deviation in conductance in a configuration where each QPC
was fully open, this error is ∼0.001 e2/h.

There is a second uncertainty in that the conductance
for a given pair of triple points varies between periods
in PL, PR. We observe that repeated measurements center
around a particular value, with a few clear outliers of much
lower conductance. To reduce this effect, we take the median
conductance over a few periods. Reducing the error is limited
by needing to remeasure the full charge stability diagram
multiple times. For example, the data in Fig. 2a are extracted
from 141 charge stability diagrams, of which about only 40
had no clear charge switching events along the line between
triple points. The errors of Fig. 2a for a particular τC and
U (median absolute deviation ∼0.006 e2/h) are such that
the exact τC line cut in which the conductance peaks at
U = 0 is unknown, but the overall non-monotonic behavior is
unchanged.

Charging events may also infrequently shift the set
transmission of one of the QPCs. Thus, for each 2D sweep
we recalibrate each QPC to ensure we are at the transmission
stated. The QPC calibration procedure relies on the accurate
determination of the cross-talk between QPCs. While in
principle this can be done very accurately, we cannot explicitly
verify the transmissions in the experimental configurations
used in our main results. However, we can verify that the
procedure works by looking at the symmetry of the charge
stability diagrams, which depends on the two island-lead QPCs
having equal transmissions. From this we estimate that the
transmissions are off from their intended values by at most
0.03.

Finally, our conversion from voltage to conductance could
introduce errors due to uncertainties in our measurement
electronics. However, we can calibrate out these uncertainties
by normalizing our measured voltages by the reflected voltage
with all QPCs closed (Methods). Any error is likely due to any
imperfections in the metal-2DEG interface, as our conversion
from voltage to conductance assumes τΩ = 1. When this

assumption is broken, the reported series conductance values
would both be off from the true series conductance, and the
true series conductance would not be the right comparison to
our NRG results, as the DCK model also assumes a perfect
metal-2DEG transparency. Using our measurements of τΩ
above, we estimate that our reported series conductance values
have an error of ∼ 1%, coming from

∣∣1− τLΩ
∣∣ ∼ .01.

DATA AVAILABILITY

All data used in this work are available in the Stanford Digital
Repository at https://doi.org/10.25740/mx151nn9365.
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Extended Data Fig. 1: Schematic illustrations of the models discussed. a, The DCK model consists of six effectively independent
spinless conduction electron reservoirs (blue for island, red for lead), described by fermionic operators fαγ and cα for α = L,R and
γ = l, i. Tunneling occurs at each of the three QPCs controlled by JL,C,R. The island charging energy Eα

C correlates electrons fαi and
cα on the same island either side of the metal component (black bar). b, At a TP, Eq. 9 describes the system at low temperatures. The
three retained charge states of the two-island structure (denoted |A⟩, |B⟩, |C⟩) are interconverted by QPC tunneling. The frustrated QCP
arises when JL = JR = JC ≡ J . The conductive pathway |A⟩ → |B⟩ → |C⟩ corresponds to transport from left lead to right lead, and is
illustrated with the blue arrows (the flow is reversed |C⟩ → |B⟩ → |A⟩ by changing the sign of the applied bias voltage).
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Extended Data Fig. 2: SEM micrograph of nominally identical device.
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Extended Data Fig. 3: Dynamical Coulomb blockade of QPC transmissions. a. Measured QPC transmissions τR, τL as a function
of a source-drain bias VSD for different QPC gate voltages. The measured transmission is extracted by measuring the series conductance
when in series with the inter-island QPC and opposite island-lead QPC set to fully transmit a single channel (τC,L/R = 1). The measured
transmissions clearly dip at zero bias, consistent with dynamical Coulomb blockade (DCB) behavior. The high bias behavior (VSD ≈ 50 uV)
recovers the ‘intrinsic’ transmission of the QPC, unrenormalized by DCB. b. DCB measurements comparing the right island-lead QPC to
the inter-island QPC. It is clear there is a substantial difference in the DCB-renormalization at zero bias between the two, likely due to
the device geometry. c. Comparison of measuring τR through both islands (blue lines, as in a, b) and through the adjacent plunger gate
PR (red lines). While typically we would expect no significant bias dependence when measuring through PR, we in fact see DCB-like
behavior. d. Comparing the two measurement pathways of c at fixed source-drain bias as a function of the QPC gate voltage. The ‘through
the island’ (blue) measurements have been shifted by 9 mV to account for the large capacitive cross-talk effect when switching between
the two different measurement pathways. That the high bias traces match well is indicative that there is indeed DCB-renormalization of
the transmission when measuring through PR. Empirically, using the zero bias, ‘through the plunger gate’ measurement of the transmission
(solid red line), best captures the relevant transmissions in the Kondo interactions of our system.
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Extended Data Fig. 4: Semi-universal τC values. a, Measured inter-island transmission as a function of an applied gate voltage. The
markers correspond to the inter-island transmissions used in Fig. 3a of the main text. b, Original line cuts in which the truncated data used
in Fig. 3a are extracted from.



SUPPLEMENTARY INFORMATION

Alternative T ∗ scaling

A natural question is whether our experimental system could
be realized by an alternative model. Demonstrating that an
experimental system is a realization of a particular theoretical
model is always complicated, since the space of possible
alternative models and refinements is in principle infinite. That
said, the universality classes that emerge from renormalization
group analysis offer one way of distinguishing different
classes of models and of identifying which could satisfactorily
describe experimental data. We believe the scaling collapse to
a universal curve using a non-trivial power law is remarkable
and is the unique signature of the critical point studied.

However, the experimental data alone are not sufficient to
definitively distinguish the power law from another close one.
It is the overall consistency between experiment and theory in
all features which validates the model. Not only is our model
the natural one for the system we have constructed, but we are
aware of no alternative model whose predictions are consistent
with all of our experimental results, as our NRG results are.

However, we can still do the same scaling collapse analysis
assuming an alternative power law and observing the results.
Explicitly, we assume T ∗ = T ∗

0+b| cos 2πU/δ−∆TP |γ , where
T ∗
0 = a|∆τC |γ , and plot the results in Supplementary Fig. 1b

for γ = 1 (other power laws such as 1/2 or 2 clearly do not
work). As we outline in Methods, we generally need to fit
an unknown shift T ∗

0 since we do not have direct knowledge
of the deviation away from the critical couplings. When γ =
1 instead of 3/2, there is no physically-motivated universal
curve, so instead of finding T ∗

0 by best fit to a universal curve,
we apply a shift T ∗

0 = a|∆τC | such that the data best collapses
onto itself.

We see that the experimental data are plausibly consistent
with the power law of 1, but there are a few subtle deviations.
Particularly, the end of the 26 and 46 mK temperature line
cuts deviate from the 20 mK one. While there is a somewhat
arbitrary horizontal offset, we cannot simultaneously well
align the low T ∗/T and high T ∗/T behavior.

Finally, we also plot the orthogonal line cuts with a T ∗ =
T ∗
0 +|∆U |1 scaling in Supplementary Fig. 1d. This data clearly

does not collapse well with a power law of 1, demonstrating
that it is indeed a 3/2 power law which governs the behavior of
our system. We attribute the differences in how well the power
law of 1 works in the parallel vs orthogonal line cuts to the
diminished influence of higher charge states in the orthogonal
direction, as mentioned in the main text.

While the above analysis suggests γ = 3/2, we
acknowledge that definitively determining the relevant power
law from experiment alone would require a larger range
of temperatures. Since there is a clear limit on how
high in temperature our model should hold, obtaining a
larger temperature range would require reaching even lower
temperatures or larger charging energies. It is the consistency
of experimental data with the 3/2 power law combined with
a broader set of agreement with NRG results that gives
confidence that we are indeed observing the DCK model.

Competition between Kondo interactions

The critical point in our system arises from a frustration of
different competing Kondo effects. To understand the nature of
the critical point, it is instructive to consider the limits where
one of the Kondo effects dominate. We again focus on the TP.

First, take the DCK model with inter-island coupling JC =
0 and JR = 0 but JL > 0. In this case, the charge pseudospin
of the left island is exactly Kondo-screened by coupling to the
left lead via the term JL(Ŝ+

L ŝ
−
L + Ŝ−

L ŝ
+
L) (that is, the charge

configurations |N,M⟩ and |N +1,M⟩ are lowered in energy
relative to |N,M + 1⟩ and participate in a single-channel
Kondo effect). This process happens on a single-channel



Kondo scale T (1)
K,L ∼ EC exp[−1/2νJL]. Likewise for JC = 0

and JL = 0 but JR > 0, the right island charge pseudospin
undergoes a single-channel Kondo effect with the right lead
on the scale of T (1)

K,R ∼ EC exp[−1/2νJR].
Next, consider the limit JL = JR = 0 but JC > 0. Here the

leads are cut off from the islands, but the inter-island coupling
remains active. The TP charge configurations |N,M +1⟩ and
|N +1,M⟩ are interchanged by tunneling at the central QPC,
and are therefore lowered in energy relative to |N,M⟩. Writing
Ŝ+
C = |N + 1,M⟩⟨N,M + 1| and Ŝ−

C = |N,M + 1⟩⟨N +
1,M | in this reduced subspace, and relabelling cL → c↓ and
cR → c↑ such that ŝ+C = c†↑c↓ and ŝ−C = c†↓c↑, the inter-island
coupling takes the form of a single-channel Kondo interaction
JC(Ŝ+

C ŝ
−
C+Ŝ−

C ŝ
+
C). Thus we again expect Kondo screening of

the two-island charge degrees of freedom by a single-channel
Kondo effect on the scale of T (1)

K,C ∼ EC exp[−1/2νJC ].
In each of these cases, the systems flows to a Fermi liquid

ground state with a completely quenched residual (T = 0)
entropy and fully screened island charge degrees of freedom.

When JL, JR, and JC are all finite, the three Kondo
effects compete. However, they cannot arise simultaneously
because each binds two of the three charge states at the
TP into a singlet with conduction electrons. This leads to
frustration when T (1)

K,L = T
(1)
K,R = T

(1)
K,C which in fact implies

the condition JL = JR = JC ≡ J (contrast with the
conventional 2IK model, Eq. 15, where the critical point
occurs when JC ∼ T

(1)
K,L/R ≪ JL/R). This leads to a critical

point with a non-Fermi liquid ground state and only partially
screened island degrees of freedom, yielding the unusual
ln(

√
3) residual entropy reported in the main text. The system

flows to this critical point on the scale of the critical Kondo
temperature, which has a slightly modified exponent relative to
its single-channel counterparts, TK ∼ EC exp[−1/νJ ], again
as reported in the main text.

Finally, consider the case where the critical point is
perturbed by a symmetry-breaking term in the Hamiltonian.
This can either be a detuning of the coupling JC ̸= J (with
JL = JR ≡ J such that δJ = JC − J), or a detuning in
gate voltage away from the TP, denoted ∆U in the main text.
Such terms generate a new scale T ∗ characterizing the flow
to the single stable fixed point of the DCK model, describing
a Fermi liquid ground state. If these perturbations are large
(meaning in practice |δJ |, |∆U | > TK) then signatures of the
QCP are not observed. For a coupling detuning |δJ | > TK ,
the system flows to a Kondo-screened Fermi liquid state on
the scale of T ∗ ∼ T

(1)
K (> TK); while for gate detuning

|δU | > TK the system flows to a frozen-charge Fermi liquid
ground state on the scale of T ∗ ∼ |∆U |. More interesting
is the case of small perturbations |δJ |, |∆U | < TK , since
then the system first flows close to the QCP (on the scale of
TK) and then away again, and toward the Fermi liquid ground
state on the scale of T ∗ (< TK), as given by Eq. 2 of the
main text. For T ∗ ≪ TK we have an intermediate window
in temperature T ∗ < T < TK where the system exhibits
critical behavior. NRG results illustrating this are shown in

Supplementary Fig. 2. This is the regime we seek to explore
experimentally in the present work.

The above results and conclusions were gleaned from our
NRG results on the DCK model. Now we turn back to the
experiment.

The competition of Kondo screening described above is
reflected experimentally in the behavior of conductance as the
QPC transmissions τ and τC are varied. In Supplementary
Fig. 3, we show experimentally how the conductance is
most enhanced when the island-lead and inter-island Kondo
interactions are of comparable strength. As τ is increased, the
maximum conductance (for any U ) occurs at increasing τC .
τ∗C is determined as the particular τC value for which the
maximum occurs. While naively we might expect the relation
between τ∗C and τ to be linear (since the Kondo interactions are
equal for J = JC), it is not necessarily true that the mapping
of τ → J and τC → JC are the same. Furthermore, the
reported values of τ and τC differ due to differences in how
they are measured (see Methods).

Fitting and model parameters

Analysis of the experimental Coulomb diamond
measurements (Supplementary Fig. 4) yields
EL

C ≃ ER
C ≃ 25 µeV and the lever arm α = 50 µeV/mV

(which is assumed to be independent of other device
parameters and temperature). We estimate I ≃ 10 µeV
from the triple point splittings (taking into account the
renormalization due to τC). We use these values in our
NRG calculations, together with the conduction electron
bandwidth D = 250 µeV (we have verified explicitly
that our computational results are insensitive to further
increasing the ratio D/EC , the precise choice of which is
somewhat arbitrary). To obtain converged results at larger
QPC transmissions, we retain 16 charging states of each
island (N̄ = M̄ = 7). Comparisons between experiment
and theory are carried out at the experimental base electron
temperature of 20 mK.

Although a precise mapping between the QPC transmissions
τL,R,C and JL,R,C exists in the idealized ballistic limit of
noninteracting electrons at a constriction, this approximation
was found to be too crude to reproduce even qualitative
features of the experiment for this more complex system.
Instead, we treated the model couplings JL,R,C as free
parameters. For a given set of experimental transmissions
τL,R,C we compared the conductance line cut along the line
UL = UR to NRG calculations to fix the optimal JL,R,C

reported in the main text. Empirically, we do find a rather
simple relation between τC and JC : roughly linear up to
τC = 0.8 (JC = 0.4) where the relation becomes slightly
non-linear.

Cross-capacitive gate effects

BL and BR in the model can be connected to the
experimental parameters UL and UR via B⃗ = ᾱU⃗ .
Off-diagonal elements of the dimensionless 2x2 matrix ᾱ
correspond to cross-capacitive gate effects. In fitting to the



experimental data, we used ᾱLL = ᾱRR = 1 and ᾱLR =
ᾱRL = 0.3. The unskewed conductance color plot in the space
of the NRG parameters (BL, BR) corresponding to Fig. 1d is
shown for reference in Supplementary Fig. 5.

Relation to two-impurity Kondo model and to “conventional”
double quantum dots

In the limit of large charging energies EL,R
C , the two-site

charge-Kondo device is described by the DCK model Eq. 1,
with spin- 12 operators for the island charge pseudospins.
The DCK model is as such a variant of the celebrated
two-impurity Kondo (2IK) model Eq. 15, in which two spin- 12
quantum impurities are each coupled to their own lead and
exchange-coupled together [4, 30, 66]–[70]. The 2IK model
reads,

H2IK = Helec+JLS⃗L · s⃗L+JRS⃗R · s⃗R+JC S⃗L · S⃗R . (15)

The above 2IK model has some similarities and differences to
the DCK model studied in this work, which we elucidate in
this section.

On the level of the effective models themselves, the two
key differences between Eqs. 1 and 15 are (i) the exchange
coupling terms in the DCK model are anisotropic, containing
only the spin-flip terms, whereas in the 2IK model they are
SU(2) symmetric; and (ii) the inter-impurity coupling in the
2IK model is a simple local exchange interaction, whereas in
the DCK model it is a correlated tunneling process involving
electrons at the central QPC. In terms of differences in the
resulting physics, the coupling anisotropy of the DCK model
in (i) is unimportant, since under renormalization [47] at low
temperatures, the couplings become effectively isotropic, as in
the 2IK model. However, the inter-island coupling term of the
DCK model in (ii) makes a dramatic difference.

Although both DCK and 2IK embody a competition
between individual Kondo screening of the spins of the two
sites and inter-site screening, the latter is a simple two-body
local singlet in the 2IK model but a many-body Kondo singlet
spanning both sites in the DCK model. An obvious sign of
this difference is that the frustration of screening responsible
for quantum criticality sets in at JC ∼ TK for the 2IK model
[67], but for the DCK model this occurs at JC ∼ JL, JR.
This can be seen in Supplementary Fig. 3, where the greatest
conductance enhancement is for τ∗C ∼ τ rather than τ∗C ≪ τ .

At the 2IK critical point, the non-Fermi liquid fixed point
properties [67] of the 2IK model can be understood in terms
of the two-channel Kondo model [70], in which two relevant
degrees of freedom of the two-site cluster are ‘overscreened’
by two spinful conduction electron channels. By contrast, at
the critical triple point of the DCK model we have three
collective states of the two-site cluster being overscreened
by three effective conduction electron channels. This leads
to very different critical properties, including for example a
2IK residual entropy of Simp = ln

√
2 but Simp = ln

√
3

in the DCK model, and different conductance signatures (the
most stark of which being the 2e2/h maximum conductance
with square-root temperature corrections in 2IK, but e2/3h

conductance with 2/3 power temperature corrections in DCK).
To our knowledge, the DCK model supports an entirely
different kind of critical point.

The quantum phase transition in the standard 2IK model
[30] is often argued to capture the competition in f -electron
heavy fermion systems between Kondo screening of local
moments by conduction electrons, and magnetic ordering of
the local moments driven by a through-lattice RKKY exchange
interaction. However, heavy fermion materials contain a lattice
of many local moments immersed in a common reservoir
of mobile electrons, whereas the 2IK considers just two
local moments, and two distinct electron reservoirs, with a
purely local inter-impurity spin exchange. In the 2IK model,
the artificial separation into two distinct conduction channels
means that its specific critical point is not found in real heavy
fermion systems. Furthermore, a similar problem arises when
attempting to realize 2IK criticality in “conventional” (small,
semiconductor) double quantum dot devices, described by an
effective two-impurity Anderson model [34]. The very charge
fluctuations on the dots required to mediate a series current
spoil the independence of the channels, and thereby smooth the
2IK quantum phase transition into a crossover [33]. Indeed,
even incipient signatures of 2IK criticality have never been
observed experimentally in any double quantum dot or bulk
system.

By contrast, the DCK model describing the two-site charge
Kondo device does support a quantum phase transition, and
distinctive transport signatures of it have been observed in
our experimental setup. Furthermore, the collective many-body
screening of the two sites mediated by conduction electrons in
our system is more directly analogous to the low-temperature
development of lattice coherence in real bulk heavy fermion
materials.

Finally, we comment on the differences between our
two-site charge-Kondo device and a standard double quantum
dot system, which does not implement 2IK due to charge
fluctuations as noted above. In our device, we see a regular
hexagonal charge stability diagram (Fig. 1), with relatively
high conductance along lines separating different charge
configurations on the two sites (with the highest conductance
being at or very near the triple point). At the triple point for
τC = τ∗C , there is a genuine quantum critical point. This is
in contrast to the two-impurity Anderson model (2IAM), a
model for a semiconductor double dot system that is more
realistic than 2IK in that it allows for inter-dot tunneling. The
conductance both at and near the DCK critical point is strongly
dependent on temperature at low T . At the critical point,
conductance is enhanced following a universal temperature
dependence controlled by the Kondo scale TK (the Kondo
scale has not yet been explored experimentally); away from
the critical point, as T is decreased further, conductance is
suppressed following a different universal curve controlled by
the Fermi liquid scale T ∗, which is observed experimentally
in Fig. 3. We simply require |JC − JL,R| > 0 to favor
the inter-island (JC > JL,R) or island-lead (JC < JL,R)
Kondo effect, either of which is predicted to drive the series



conductance to exactly zero in the low-temperature limit. Even
for small |JC − JL,R| > 0 we still predict and experimentally
observe a dramatic low-T conductance suppression, and a
strong temperature dependence.

By contrast, in the standard double quantum dot, the exact
form of the temperature dependence differs for different
regimes. For strong inter-dot coupling, such that JC is
much stronger than the dot-lead Kondo temperature TK , the
conductance is suppressed for all T ≪ JC . Likewise there
is a conductance suppression when TK ≫ JC , although the
physical interaction is different (RKKY-like inter-dot singlet
compared to a Kondo singlet). That there is a conductance
suppression on either side of JC = TK is qualitatively similar
to the DCK system, where we observe non-monotonicity in
the conductance as a function of τC (Fig. 2a). However, the
non-monotonicity in 2IAM is not necessarily expected at the
triple point like in DCK, and in 2IAM when JC ∼ TK
(but not equal) the conductance is only weakly temperature
dependent and remains finite even as T → 0, in contrast to
the DCK model where there is a strong temperature-dependent
suppression of conductance for even small detunings. This
reflects the fact that in the DCK model there is a quantum
critical point whereas in a normal semiconducting dot system
there is only a crossover. Furthermore, as stated in the
main text, the distinctive maximum e2/3h conductance could
not be realized in 2IAM, particularly due to the presence
of spin. Thus, even ignoring the quantitative differences
in the temperature dependence between the two systems,
non-monotonic conductance as a function of couplings, with
a maximum at e2/3h, constitutes a unique signature of the
DCK system.

To summarize, there are clear theoretical differences in the
couplings, energy scales, and temperature dependence between
the DCK model and realistic models of two semiconductor
dots. In this work we experimentally observe the very specific
scaling behavior with temperature (Fig. 3b) that is only
expected for the critical point in the DCK model.

Finally, with regards to the presence of spin in a
semiconductor double dot system, there is a clear odd-even
filling effect in standard spinful double quantum dots, with
Kondo-boosted conductance only manifest when one or other
of the dots has an odd number of electrons and carries a
net spin- 12 . In contrast, in the DCK system the physical
electrons are effectively spinless, and Kondo physics arises
due to charge degeneracies rather than spin degeneracies,
so there are no odd-even effects and every hexagon in the
charge stability diagram is equivalent to every other one. In
a spinless semiconducting dot system, the physics is simpler,
as no Kondo effect could be present with inter-dot tunneling,
precluding any strong renormalization effects.

Outlook for scaling to more complex clusters

Technical improvement of the materials platform for devices
could be crucial to enable scaling to larger clusters. Switching
to InAs-based quantum wells would allow boosting the
charging energy [71] – and thus Kondo temperature – by

shrinking the islands, without sacrificing the other demanding
requisites such as well-defined quantum Hall edge states,
high-transparency of miniature ohmic contacts to those edges,
and quantum point contacts that smoothly tune transmission
of the edge modes. This would increase our window of
temperature over which conduction could be described as
universal, and improve our ability to isolate the behavior
near critical points even at strong coupling. As more islands
are coupled together, measuring near a particular set of
near-degenerate charge states, with limited influence from
higher-energy states, becomes even more important and
challenging.

Derivation of DCK model

Here we provide further details on the derivation of the
DCK model – Eq. 1 of the main text. It is to be read in
the conjunction with the Methods section of the paper and
Extended Data Fig. 1. Our analysis follows the pioneering
work by Matveev and coworkers in Refs. [29, 31, 32] and
further developed in Refs. [72, 73].

We start with the microscopic Hamiltonian,

H′ = H′
elec +H′

QPC +H′
int +H′

gate (16)

with H′
elec =

∑
α,γ,k ϵkψ

†
αγkψαγk +

∑
α,k ϵkϕ

†
αkϕαk

describing the six electronic reservoirs, with α = L,R for
left or right, and γ = l, i for lead or island. Tunneling at each
QPC is described by,

H′
QPC =

∑
α

Jα

(
ψ†
αlψαi +H.c.

)
+ JC

(
ϕ†LϕR +H.c.

)
,

(17)
where we have utilized the definitions of the localized orbitals
at the QPC positions, ψαγ =

∑
k ξkψαγk and ϕα =∑

k ξkϕαk, with expansion coefficients ξk.
Electronic interactions on the islands are described by [31],

H′
int =

∑
α,β

Q̂αQ̂β

2Cαβ
, (18)

with α, β ∈ L,R. Here CLL and CRR are the capacitances
of the L and R islands, and CLR = CRL is the
inter-island cross-capacitance. We define the charging energies
Eα

C = e2/2Cαα and write I = e2/CLR. The total charge
operator for island α = L,R is specified by Q̂α =

e
∑

k

(
ψ†
αikψαik + ϕ†αkϕαk

)
.

The effect of local potentials and external gate voltages is
described by,

H′
gate =

∑
α

B′
αQ̂α/e , (19)

where the total potential on island α = L,R is given by
B′

α = B0
α +Bα. Here the reference B0

α determines the island
occupancy when no gate voltages are applied, and Bα accounts
for the change due to applied gate voltages.

The experimental plunger gate voltage Pα applied to island
α = L,R is related to the energy Uα = U0

α +AαPα, relative
to the offset reference U0

α, via the experimentally measurable
capacitive lever arm Aα. Cross-capacitive gate effects result



in a skewing of the charging diagram in gate-voltage space,
but can be accounted for by writing B⃗′ = ᾱU⃗ , and fitting the
dimensionless 2x2 matrix ᾱ to experimental results.

U(1) charge is conserved separately in each of the three
conduction electron channels ψLl/ψLi, ψRl/ψRi and ϕL/ϕR.

The model Eq. 16 is intractable as it stands, being
a complex, strongly interacting many-body problem. We
therefore proceed by utilizing the well-known mapping to a
Kondo-type model, introduced first by Glazman and Matveev
in Ref. [31] in the context of a single metallic island in a tunnel
junction, and developed further in Refs. [29, 32, 72, 73]. The
mapping consists of three steps.

The first step is to label the many-particle electronic
states of the isolated but interacting islands described by
H′

elec + H′
int by their charge quantum numbers Qα (which

are conserved for H′
QPC = 0, and correspond to their U(1)

labels). We write these states as |ΨL; ΨR;QL;QR⟩, where
Ψα is a state of island α with Qα/e electrons, defined
such that Q̂α|ΨL; ΨR;QL;QR⟩ = Qα|ΨL; ΨR;QL;QR⟩ for
α = L,R. The macroscopic number of electrons Nα on
island α can be treated exactly as auxiliary degree of freedom,
|ΨL; ΨR;QL;QR⟩ → |ΨL; ΨR⟩el⊗|NL;NR⟩ch subject to the
constraints Qα = eNα. The corresponding number operators
in the charge subspace are defined as

N̂α =
∑

nL,nR
nα |nL;nR⟩⟨nL;nR|

such that N̂L|nL;nR⟩ = nL|nL;nR⟩ and N̂R|nL;nR⟩ =
nR|nL;nR⟩. On the level of operators, this is equivalent to
writing ψ†

αγk = f†αγkN̂
+
α and ϕ†αk = c†αkN̂

+
α (subject to

the constraints Q̂α = eN̂α). Here, fαγk and cαk are regular
fermionic operators, while

N̂±
L =

∑
nL,nR

|nL ± 1;nR⟩⟨nL;nR|
N̂±

R =
∑

nL,nR
|nL;nR ± 1⟩⟨nL;nR|

are ladder operators for the electron occupancy of the islands.
Since N̂+

α N̂
−
α =

∑
nL,nR

|nL;nR⟩⟨nL;nR| ≡ 1̂ch is the
identity operator in the charge sector, we can identify H′

elec →
Helec, with

Helec =
∑
α,γ,k

ϵkf
†
αγkfαγk +

∑
α,k

ϵkc
†
αkcαk , (20)

which is equivalent to Eq. 4 in Methods. Furthermore, the
constraint implies,

H′
int → Hint = EL

CN̂
2
L + ER

C N̂
2
R + IN̂LN̂R , (21)

H′
gate → Hgate = B′

LN̂L +B′
RN̂R . (22)

Including now the tunneling processes at the QPCs, we have

H′
QPC → HQPC =

∑
α

Jα

(
f†αlfαiN̂

−
α +H.c.

)
+JC

(
c†LcRN̂

+
L N̂

−
R +H.c.

)
,

(23)

which accounts for quantum fluctuations in the number of
electrons on the islands. For each tunneling event involving

island α, the occupation Nα changes by ±1. Everything is
exact so far.

The second step is to relax the exact constraint Q̂α = eN̂α.
This is an approximation, but one that is justified in the
continuum limit [29, 31, 32, 72, 73], when the dynamics of
Q̂α is insensitive to the precise number of electrons on the
islands. For large metallic islands as used in the present
experimental setup, each island hosts a very large number
of electrons and the level spacing is small enough that the
continuum approximation is valid even at experimental base
temperatures. In this case, we can regard N̂α as independent
degrees of freedom absorbed into the definition of a complex
‘impurity’ [73]. The states of the effective impurity (the
island charge states) are interconverted by tunneling at the
QPCs. The effective impurity model is given by H =
Helec+HQPC+Hint+Hgate (Eqs. 20-23, without constraint).
However, since the number of electrons on the islands is
macroscopically large, the resulting impurity problem remains
intractably complex.

The final step is therefore to project the full Hamiltonian
H onto a simplified effective model Heff = P̂HP̂ in which
only a restricted set of island charge states are retained. This
approximation is justified at low temperatures and small QPC
transmissions, because excited charge states ∆E ∼ O(EL,R

C )
above the ground state become inaccessible for kBT ≪ ∆E.

For a single metal island in a tunnel junction, the above
steps yield an effective anisotropic Kondo model, when only
the lowest two charge states are retained. The validity of
this result was confirmed by Matveev and coworkers [31, 32],
who showed that for small transmission the island charge and
conductance exhibit periodic oscillations. Confining attention
to a single such period in the vicinity of a charge-degeneracy
point (Coulomb blockade step) in the ground state, the full
model was projected onto an effective low-energy model
in which only island states with N and N + 1 electrons
were retained (that is, Heff = P̂HfullP̂ with projector P̂ =
|N⟩⟨N |+ |N +1⟩⟨N +1|). It was shown in Ref. [32] that this
effective model is indeed equivalent to the anisotropic Kondo
model: a perturbative calculation of the scattering t-matrix
found the same divergences at the charge degeneracy point of
the island as in the spin- 12 Kondo model with spin degeneracy.
The connection was further demonstrated by a weak coupling
renormalization group analysis [31, 32].

This charge-Kondo mapping is valid when only the lowest
two charge states of the island play a role in the physics
(the two active charge states being mapped to an ‘impurity’
pseudospin- 12 degree of freedom). This model is therefore
a good description of the physical system when the QPC
transmissions are relatively small, temperature is relatively
low, and the applied gate voltages do not push the system
too far from the charge degeneracy point. If the QPC
transmission becomes large, more island charge states become
involved (and indeed near perfect QPC transmission, a
macroscopic number of charge states become important and
the Kondo-type description breaks down [29]). Likewise, at
elevated temperatures kBT ∼ ∆E low-lying excited charge



states become important and cannot be neglected. Also, to
capture the periodicity in gate voltage of the charge stability
diagram, more charge states must be included in the effective
model.

However, it is possible to relax the small transmission,
small temperature, and small gate voltage conditions by
going beyond the strict charge-Kondo model description
to include more island charge states, as shown for the
single-island case in [20, 73]. This allows quantitative
comparisons to experiment at moderate transmission,
though the experimentally-accessible limit of near-perfect
transmission will always be beyond such a theoretical
description [29]. Including more charge states also allows the
physics at higher temperatures to be simulated, and to model
the full charge stability diagram. For a given set of model
parameters (transmissions, temperature, gate voltage etc) one
can check that calculations are converged with respect to
increasing the number of retained island charge states to give
confidence that the model provides a faithful description of
the physics.

Returning to the two-site system which is our focus here, we
now discuss the mapping at low temperatures and weak QPC
transmission in the vicinity of charge degeneracy points for
both islands. Here we expect the mapping to result in a variant
of the two-impurity Kondo model. Specifically, to obtain the
DCK model Eq. 1, we project the Hamiltonian H onto the
four-dimensional manifold of charge states:
(n,m) = (N,M), (N + 1,M), (N,M + 1), (N + 1,M + 1)
where N and M are suitable reference macroscopic charge
states of each island. For small applied gate voltages
(BL, BR ≪ ∆E), these states can be selected as the
low-energy (ground state) manifold by setting the offsets
B0

L = −2EL
C(N + 1

2 ) − I(M + 1
2 ) for the left island and

B0
R = −2ER

C (M + 1
2 ) − I(N + 1

2 ) for the right island. All
other charge states are at least EL,R

C higher in energy. Zero
applied gate voltage BL = BR = 0, then corresponds to the
charge degeneracy point for the individual islands (Jα = 0
and I = 0); while BL = BR = 0 yields the high-symmetry
point between triple points in the charge stability diagram of
the full system (finite Jα and I). In this case,

Hint +Hgate = EL
C(N̂L −N − 1

2 )
2 + ER

C (N̂R −M − 1
2 )

2

+I(N̂L −N − 1
2 )(N̂R −M − 1

2 ) +BLN̂L +BRN̂R

(24)

We directly obtain HDCK = P̂HP̂ with projector P̂ =∑
a,b∈0,1 |N + a;M + b⟩⟨N + a;M + b|, up to irrelevant

constants. The projection becomes exact in the limit EL,R
C →

∞. In Eq. 1 we now identify the charge pseudospin- 12
operators as:

Ŝ+
L =

∑
b=0,1

|N + 1;M + b⟩⟨N ;M + b| ,

Ŝz
L = 1

2

∑
b=0,1

[
|N + 1;M + b⟩⟨N + 1;M + b|

−|N ;M + b⟩⟨N ;M + b|
]
,

and Ŝ−
L =

(
Ŝ+
L

)†
for the left island, whereas,

Ŝ+
R =

∑
a=0,1

|N + a;M + 1⟩⟨N + a;M | ,

Ŝz
R = 1

2

∑
a=0,1

[
|N + a;M + 1⟩⟨N + a;M + 1|

−|N + a;M⟩⟨N + a;M |
]
,

and Ŝ−
R =

(
Ŝ+
R

)†
for the right island.

The effective low-energy DCK model is a variant of
the standard spin- 12 two-impurity Kondo model, here with
anisotropic exchange, but also with the dynamics of an
additional conduction electron bath in the central region
correlated to the inter-impurity interaction – a kind of
two-impurity, three channel model. Separate island-lead
Kondo effects now compete with an inter-island Kondo effect,
giving rise to a quantum phase transition, as discussed in
the main text and confirmed by experimental conductance
measurements.

Periodicity of system

The DCK model is expected to hold equivalently near any
triple point. Experimentally, by sweeping over a larger gate
voltage range than shown in the main text, we see a periodic
structure with no systematic differences at any given pair of
triple points. Any averaging done was in fact over different
pairs of triple points, as the positions of each triple point in
gate voltage space drift over time. In Supplementary Fig. 6
we show one example of a measured charge stability diagram
over a large range of UL, UR. This particular measurement
additionally displays two representative types of charge noise
– occasional jumps of a clear discontinuity and more scattered
individual points of noise.

Single Island Two-Channel Kondo

A key assumption in our present work is that both the
left and the right island are each a true implementation
of a charge-Kondo site. We reproduced a key earlier
experimental demonstration of two-channel Kondo behavior
by Iftikhar [19], which is only possible with a true
equivalent recreation of the hybrid metal-semiconductor
island. Shown in Supplementary Fig. 7 is the series
conductance through a single island (τC = 0), rescaled
into a universal conductance curve as a function of T/TK .
TK is determined by the transmissions of two island-lead
QPCs (for example, τR, and the opposite QPC of the right
island, unlabeled in Fig. 1a) which are set to be equal. To
best compare results, we set the same transmissions (τ =
{.06, 0.12, 0.245, 0.36, 0.47, 0.57, 0.68, 0.77, 0.85, 0.93}) as
in [19], and thus nearly the same TK values (due to the
similar charging energies EC in the two experiments).
A caveat in our system however, is that we could only
see quantitative agreement when using values for QPC
transmissions renormalized by dynamical Coulomb blockade
as described in Methods.



REFERENCES

[66] Jayaprakash, C., Krishna-murthy, H. R. & Wilkins, J. W. Two-Impurity
Kondo Problem. Phys. Rev. Lett. 47, 737–740 (1981).

[67] Affleck, I. & Ludwig, A. W. W. Exact critical theory of the two-impurity
Kondo model. Phys. Rev. Lett. 68, 1046–1049 (1992).
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Supplementary Fig. 1: Analysis of alternative power law. a. Scaling collapse of the same data in Fig. 3b without the universal curve. b.
Same data as in a, but with | cos (2πU/δ) −∆TP | raised to a power of 1 instead of 3/2. Other reasonable choices for the exponent such
as 1/2 or 2 do not show clear collapse onto a single curve. c. We also show the data of Fig. 3c without the universal curve, and similarly
compare the same data plotted using T ∗ ∼ |∆U |1 in d, which likewise shows poorer scaling collapse.
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Supplementary Fig. 2: Physical properties near the near critical point. a, The NRG calculated entropy flow as a function of T/TK .
The different colors represent different values of triple point detuning ∆U , which controls the Fermi liquid scale T ∗, limiting the range
of temperature for which the non-trivial ln(

√
3) entropy is predicted. b, NRG calculated series conductance as a function of T/TK , for

the same ∆U values as in a. For small ∆U we see good scale separation T ∗ ≪ TK , in which case we have effectively two universal
conductance curves – one approaching the critical point as a function of T/TK and the other Fermi liquid crossover away from the critical
point as a function of T/T ∗. The latter is probed experimentally in this work. c, The NRG calculated Fermi-liquid scale T ∗ (in units of TK ,
red points) plotted against ∆U/TK . This is compared to the asymptotic behavior near the triple point used in Eq. 2 where T ∗ ∼ |∆U |3/2
(blue line). Note that similar behavior is observed for detuning the couplings JL,R ̸= JC away from the critical point.
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Supplementary Fig. 3: Competition between Kondo interactions. Conductance enhancement is greatest when the island-lead and
inter-island Kondo interactions are of equal strength, which is seen as an increasing τ∗

C as τ is increased. τ∗
C is determined as the τC

value for which conductance is a maximum, regardless of U . This value defines the plotted circles. In the data set these values are extracted
from, τC is stepped by 0.1. Thus, we can only reliably identify τC∗ within an uncertainty of ±0.1, represented by the error bars. The
non-linear relation is likely due to both τ = τC not implying J = JC and a difference in how we are able to measure τ and τC (Methods).
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Supplementary Fig. 4: Coulomb diamonds. Conductance measurement through a single island (τC = 0) as a function of the plunger gate
PR and a source-drain bias VSD . The height of the diamond is used to extract EC ≈ 25 µeV, and subsequently a lever arm α = 50 µeV/mV
to convert gate voltages to energies.
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Supplementary Fig. 5: Unskewed NRG charge stability diagram. Charge stability diagrams of Fig. 1d as a function of BL, BR.
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Supplementary Fig. 6: Periodicity of charge stability diagram. The bottom charge stability diagram of Fig. 1c over a broader range of
UL, UR showing the periodicity. This also shows the two representative types of charge noise which affect measurements – occasional jumps
(on the left side) where there is a clear vertical discontinuity, and more scattered individual points of noise (on the far right).
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Supplementary Fig. 7: Two-channel Kondo scaling for a single island. The measured series conductance through a single island (τC = 0),
with equal transmissions set for the top and bottom island-lead QPC. The transmissions are rescaled into a Kondo temperature, and when
the conductance is plotted as a function of the single parameter T/TK , they fall onto a single universal curve.


