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The spin 1=2 entropy of electrons trapped in a quantum dot has previously been measured with great
accuracy, but the protocol used for that measurement is valid only within a restrictive set of conditions.
Here, we demonstrate a novel entropy measurement protocol that is universal for arbitrary mesoscopic
circuits and apply this new approach to measure the entropy of a quantum dot hybridized with a reservoir.
The experimental results match closely to numerical renormalization group (NRG) calculations for small
and intermediate coupling. For the largest couplings investigated in this Letter, NRG calculations predict a
suppression of spin entropy at the charge transition due to the formation of a Kondo singlet, but that
suppression is not observed in the experiment.
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Entropy is a powerful tool for identifying exotic
quantum states that may be difficult to distinguish by
more standard metrics, like conductance. For example,
bulk entropic signatures in twisted bilayer graphene
indicate that carriers in some phases with metallic con-
ductivity retain their local moments, as would normally be
associated with a Mott insulator [1–3]. Entropy has also
been proposed as a tell-tale characteristic of isolated non-
Abelian quasiparticles, whether Majorana modes in a
superconductor [4,5] or excitations of a fractional quan-
tum Hall state [6–8], distinguishing them from Abelian
analogs.
Quantifying the entropy of single quasiparticles is

challenging due to the small signal size, of order kB, but
first steps in this direction have been made in recent years
[9,10]. Reference [9] employed Maxwell relations to
measure the kB lnð2Þ spin entropy of a single electron
confined to a quantum dot (QD) in GaAs via the temper-
ature-induced shift of a Coulomb blockade charge tran-
sition. That approach relied on the assumption of weak
coupling between the QD and the reservoirs to fit based on
the specific charging line shape known for that regime. In
that weak-coupling regime, spin states are pristine enough
to serve as spin qubits [11–17] but the underlying physics is
very simple.

The weak-coupling approach of Ref. [9] is not applicable
to a broad class of mesoscopic devices [18], which limits its
value in probing the complex Hamiltonians that may be
implemented in such systems. For example, a single-
impurity Kondo effect may be realized when the localized
spin is strongly coupled to a reservoir [19,20]. Recently,
more complicated structures including multiple dots have
been engineered to host multichannel Kondo states [21,22],
or a three-particle simulation of the Hubbard model [23].
Entropy measurements made on any of these systems
would offer a significant advance in their understanding.
Here, we develop a universal protocol for mesoscopic

entropy measurement that forgoes the simplifying assump-
tions of Ref. [9], then apply it to investigate the entropy of
the first electron as it enters a quantum dot when strongly
hybridized with a reservoir. The protocol is based on a
Maxwell relation appropriate for mesoscopic systems,
where the free energy includes both local and global terms.
Expressed in integral form, the relation

ΔSϵ1→ϵ2 ¼ −
Z

ϵ2

ϵ1

dNðϵÞ
dT

dϵ; ð1Þ

provides access to the entropy change, ΔS, of the QD-lead
system as a function of the gate-tuned QD energy ϵ, based
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on measurements of the change in average QD occupation,
N, with temperature, T [5,18,24]. Equation (1) is related to
the more conventional Maxwell relation, ∂s=∂μ ¼ ∂n=∂T,
that applies to macroscopic systems with particle density n
and entropy density s, here replacing the reservoir chemical
potential μ with the dot energy ϵ [24].
We first confirm that the data match well to single-

particle approximations when the coupling, Γ, between dot
and reservoir is weak (Γ ≪ kBT), then show that the onset
of entropy as the electron enters the dot is strongly modified
when Γ≳ kBT. The measurement of this modified entropy
signature is the primary result of this Letter, offering clear
entropic evidence of the effect of strong reservoir coupling
on the quantum state.
Measurements were performed on a mesoscopic circuit

[Fig. 1(a)] in a GaAs 2D electron gas [24,25], including the
QD, a charge sensing quantum point contact, and an electron
reservoir that can be rapidly Joule heated above the chip
temperature T to an elevated T þ ΔT. Coupling between the
QD and the thermal reservoir is via a single tunnel barrier,
with Γ controlled by VT. The QD energy ϵ was tuned using
gate voltage VD. Throughout this Letter we report VD with
respect to the midpoint of the N ¼ 0 → 1 charge transition,

ΔVD ≡ VD − VDðN ¼ 1=2Þ. N in the QD was monitored
via the current, ICS, through the charge sensor [Fig. 1(b)]
[26], which was biased with a dc voltage typically 100μV.
Changes in occupation,N, were scaled from ICS using Ie, the
net drop in ICS across a 1e charge transition [24]. Figure 1(b)
illustrates weakly coupled N ¼ 0 → 1 transitions at T ¼
100 mK and T þ ΔT ¼ 130 mK. Throughout this Letter
both T and T þ ΔT were calibrated by fitting to thermally
broadened charge transitions; except where noted, T ¼
100 mK with ΔT ∼ 30 mK. Measurements at T and
T þ ΔT were interlaced by alternated Joule heating of the
reservoir at 25 Hz to reduce the impact of charge instability,
then averaged over several sweeps across the charge tran-
sition, see Ref. [24].
Figure 1(c) shows the change in detector current from 100

to 130 mK, ΔICSðVDÞ≡ ICSðT þ ΔT; VDÞ − ICSðT; VDÞ,
scanning across the 0 → 1 transition in the weakly coupled
regime.Note that−ΔICS is plotted instead ofΔICS in order to
connect visually with ΔN, which increases when ICS
decreases. As in Ref. [9], the line shape of ΔICSðVDÞ in
Fig. 1(c) may be fit to a noninteracting theory for thermally
broadened charge transitions to extract the change in entropy
across the transition,ΔSfit, not requiring calibration factors or
other parameters (see Ref. [9] for details). For the data in
Fig. 1(c), this yields ΔSfit ¼ ð1.02� 0.01ÞkB lnð2Þ, where
the uncertainty reflects the standard error among five
consecutive measurements at slightly different VT .
The limitation of this approach is illustrated by the very

different line shape in Fig. 1(d), reflecting the 0 → 1
transition when the QD is strongly coupled to the reservoir.
Fitting the data in Fig. 1(d) to thermally broadened theory
would yield a meaningless (and incorrect) ΔSfit >
10kB lnð2Þ for the entry of the spin-1=2 electron. For a
quantitative extraction of entropybeyond theweakly coupled
regimeofFig. 1(c),we instead follow the integral approach in
Eq. (1) that makes no assumptions on the nature of the
quantum state. Evaluating Eq. (1) provides ameasurement of
ΔSðϵÞ that is continuous across the charge transition, rather
than just comparing N ¼ 0 to N ¼ 1 values.
Before moving to the quantitative evaluation of entropy,

we note that the different line shapes of ΔICSðVDÞ in
Figs. 1(c) and 1(d)—the peak-dip structure in Fig. 1(c)
contrasting with the simple peak in Fig. 1(d)—can be
understood as representing two temperature regimes for
the Anderson impurity model. Figure 1(c) represents the
high temperature limit, where dN=dT is approximately a
measure of the energy derivative of the density of states in the
QD, and thus exhibits positive and negative lobes. At
sufficiently low temperatures, the exact solution [27] and
the resulting Fermi liquid theory [28] predict a positive
dN=dT for all values of the chemical potential, from the
empty level to the Kondo regime through the mixed-valence
regime, with a peak expected at a chemical potential
corresponding to TKðϵÞ ∼ T, where the entropy is expected
to crossover from S ¼ 0 to S ¼ kB lnð2Þ. Figure 1(d),
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FIG. 1. (a) Scanning electron micrograph of the device.
Electrostatic gates (gold) define the circuit. Squares represent
Ohmic contacts to the 2DEG. The thermal electron reservoir (red)
was alternated between base and elevated temperatures. (b) Cur-
rent through the charge sensor, ICS, for the 0 → 1 charge
transition in a weakly coupled regime, separated into the un-
heated (100 mK) and heated (130 mK) parts of the interlaced
measurement [25], showing the single electron step height Ie. (c),
(d) Change in ICS from 100 to 130 mK, for weak (c) and strong
(d) coupling between QD and reservoir. (c) includes fit to weakly
coupled theory.
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corresponding to a measurement where T ≪ Γ, demon-
strates such all-positive dN=dT.
We next describe the evaluation of Eq. (1) from

experimental data. dNðϵÞ=dT is approximated by the ratio
ΔNðVDÞ=ΔT ¼ −ΔICSðVDÞ=ðIeΔTÞ. ΔT is expressed in
units of gate voltage using the corresponding lever arm [24]
so that the integral may be evaluated over VD, giving
ΔSðVDÞ. We begin by confirming the integral approach in
the weakly-coupled (Γ ≪ kBT) regime, where the physics
is simple.
Figure 2 shows the entropy change across theN ¼ 0 → 1

charge transition for such a weakly coupled transition,
calculated from the data in Fig. 1(c) using Eq. (1). The
resulting ΔSðϵÞ indicates that the change in dot entropy is
nonmonotonic as the first electron is added, reaching a
kB lnð3Þ peak before settling to kB lnð2Þ. The kB lnð3Þ peak
just above ΔVD ¼ 0 reflects a combination of charge and
spin degeneracy in the middle of the charge transition, with
three microstates fjN ¼ 0i; jN ¼ 1;↑i; jN ¼ 1;↓ig all
equally probable. Charge degeneracy is gone after the
transition, but spin degeneracy remains, leaving two micro-
states fjN ¼ 1;↑i; jN ¼ 1;↓ig. The net change in entropy
from beginning to end, ΔS0→1 ¼ ð0.99� 0.02ÞkB lnð2Þ, is
nearly identical to the ΔSfit ¼ ð1.02� 0.01ÞkB lnð2Þ from
Fig. 1(c), despite different sources of error for the two
approaches.
The inset to Fig. 2 compares the fit and integral

approaches for weakly coupled charge transitions covering
4 orders of magnitude in Γ, tuned by VT [see Fig. 3(b) inset
for calibration of Γ]. The consistency between ΔS0→1 and
ΔSfit over the full range of weakly coupled VT , in addition
to the fact that ΔSmax remains kB lnð3Þ throughout this
regime, confirms the accuracy of the integral approach.
Small deviations from ΔS0→1 ¼ ΔSfit ¼ kB lnð2Þ, such as

that seen around VT ¼ −330 mV, are repeatable but
sensitive to fine-tuning of all the dot gates; we believe
they are due to extrinsic degrees of freedom capacitively
coupled to the dot occupation, such as charge instability in
shallow dopant levels in the GaAs heterostructure.
After confirming the accuracy of Eq. (1) in the weakly

coupled regime, we turn to the regime Γ≳ kBT (VT > −
280 mV),where the influence of hybridization is expected to
emerge. Figure 3 shows the crossover from Γ ≪ kBT to
Γ ≫ kBT, illustrating several qualitative features. The
kB lnð3Þ peak in ΔSðμÞ decreases with Γ, until no excess
entropy is visible at the charge degeneracypoint forΓ=kBT ≳
5 [Fig. 3(a)]. This suppression of the entropy associated with
charge degeneracy originates from the broadeningbyΓ of the
N ¼ 1 level due to hybridizationwith the continuous density
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of states in the reservoir [5]. At the same time, the total
entropy change ΔS0→1 remains ∼kB lnð2Þ over the entire
range of Γ explored in this experiment, reflecting the entropy
of the spin-1=2 electron trapped in the QD.
To make quantitative comparison between theory and

experiment, we employ numerical renormalization group
(NRG) simulations [29,30] that yieldN as a function ofT and
ϵ0, where−ϵ0 is the depth of the dot level below the reservoir
chemical potentialμ. FromNðT; ϵ0Þ,dN=dT and therebyΔS
are extracted via Eq. (1). To make a direct comparison with
the experiment, Δϵ0 ≡ ϵ0 − ϵ0ðN ¼ 1=2Þ is defined like
ΔVD, centred with respect to the charge transition. NRG
parameters are calibrated tomatch those in themeasurements
by aligning the occupation NðΔϵ0Þ with the measured
NðΔVDÞ [24], from which the appropriate Γ=T calculation
maybe selected and theprecise connectionbetweenΔϵ0with
ΔVD is ensured. As seen in Fig. 3(b), the agreement between
data and theory in terms of dot occupation is within the
experimental resolution, giving confidence that measured
and calculated ΔS may be compared directly.
Figure 3(c) illustrates NRG predictions for ΔSðϵ0Þ over

the range of Γ accessible in our measurements. Matching
the data, the peak in entropy due to charge degeneracy is
suppressed for Γ > kBT, while the net entropy change
across the transition remains kB lnð2Þ. At the same time, a
qualitative difference between data and NRG calculations is
the shift to the right seen in NRG curves for higher Γ
[Fig. 3(c)], but not observed in the measurements [Fig. 3(a)].
This relative shift of NRG curves with respect to data is not
explained by an offset ofΔϵ0 with respect toΔVD, as the two
are aligned by the occupation data [Fig. 3(b)].
Instead, the shift of NRG curves to the right (to larger

chemical potential) with increasing Γ is explained by the
virtual exchange interactions underlying the Kondo effect,
which form a quasibound singlet state between the local-
ized spin and a cloud of delocalized spins in the reservoir at
temperatures below TK. This state has no magnetic moment
[31] and, in the case of a single-electron QD, zero entropy.
Thus, due to the Kondo effect, we expect the entropy to
remain zero for all dot energies that obey T < TKðϵ0Þ.
Since TK ∝ e−πðϵ0−μÞ=Γ in the (experimentally relevant)
large-U limit, where U represents the QD charging energy,
we expect the onset of kB lnð2Þ entropy to shift to larger
values of ϵ as Γ increases, as seen in the NRG results.
It remains a puzzle why the strong suppression of

entropy right at the charge transition, seen in NRG
calculations for Γ=kBT ≥ 5, is not observed in the data.
It is possible that the charge measurement itself can lead to
dephasing of the Kondo singlet [32–34]. In order to test for
charge-sensor dephasing in our measurement, the experi-
ment was repeated at charge sensor biases from 300 μV
down to 50 μV, but no dependence on the bias was seen in
the data [24]. In the future, experiments that allow
simultaneous transport and entropy characterization of
the Kondo state may help to resolve this puzzle.
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1

A MESOSCOPIC MAXWELL RELATION

Our goal is to calculate the entropy change of the full thermodynamic system, including both the QD and the lead
to which it is coupled, that occurs as the QD occupation is tuned by voltage applied to a local gate. This gate voltage
can be modelled as a local potential ε for the QD occupation N ; it is this quantity, which is thermodynamically
conjugate to the local potential, that has to be measured with the charge detector.

We are operating under the approximation that the local gate-tuned potential couples precisely and only to the
charge of the QD. Then, the differential of the grand potential Φ for the system may be written as:

dΦ = −SdT − (Nres +N)dµ+Ndε+ ...

where S is the total entropy of the system, µ is the total chemical potential of the system that contains Nres + N
electrons, Nres is the average occupation of the reservoir, N is the average occupation of the QD level with energy ε,
and ... represents other terms irrelevant to this calculation. Then, we have

∂Φ/∂ε = N (S1)

∂Φ/∂T = −S (S2)

∂2Φ

∂ε∂T
=

∂2Φ

∂T∂ε
, giving (S3)

∂N/∂T = −∂S/∂ε (S4)

which is integrated to give Eq. 1. We emphasize that the relation ∂Φ/∂ε = N only holds if there is a term, Hgate = εN̂ ,

in the gate-controlled Hamiltonian. Here N̂ is the charge operator of the QD. We emphasize that this relation holds
for the thermal averaged value N ≡ 〈N̂〉, even though N̂ is not a conserved quantity.

As well, ε must not couple to any other (reservoir) degrees of freedom. Although one might worry about a direct
effect of VD on the reservoir, the fact that ∆ICS is zero outside of the charge transition region (see e.g. Figs 1cd, 3a)
shows that any effect that is there does not modify the entropy as determined via Eq. 1.

DEVICE FABRICATION

The device was fabricated in a GaAs/AlGaAs heterostructure that hosts a 2D Electron Gas (2DEG) 57nm below
the surface and that had a 300 mK carrier density of 2.42 × 1011cm−2 with mobility 2.56 × 106cm2/(Vs). A UV
laser writer was used to define the mesas, followed by electron beam lithography to define NiAuGe ohmic contacts.
Additionally, 10 nm of HfO2 was deposited by atomic layer deposition to improve gating stability. The electrostatic
gates were fabricated with two stages of electron beam lithography followed by electron beam evaporation: a fine
step for the inner parts, and a coarse step for the outer parts of the gates. In the fine step, 2/12 nm of Pd/Au were
deposited. In the coarse step, 10/150 nm of Ti/Au were deposited.

MEASUREMENT ELECTRONICS

A custom built combined DAC/ADC unit was used to apply potentials to the gates and heating QPCs as well as
to record the voltage output of a Current to Voltage Basel SP983c amplifier (https://www.baspi.ch/low-noise-high-
stab-itov-conv). The DAC/ADC unit is built from an Arduino Due and two Analog Devices evaluations boards: the
AD5764 DAC and AD7734 ADC. The Arduino is the interface between the measurement PC and the DAC/ADC
boards. The whole design is based on the information provided at [http://opendacs.com/dac-adc-homepage/] with
some substantial modifications, particularly to the Arduino code (https://github.com/folk-lab/FastDAC). The most
significant modification is to provide functionality to apply a synchronized square wave bias for heating, whilst
measuring continuously.

CHARGE SENSOR MAPPING

The charge sensor is tuned to the most linear regime before each measurement (Fig. S2a). In the limit of very
strong coupling, however, the transition becomes so broad that the non-linearity of the charge sensor may begin to
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FIG. S1. Scanning electron micrograph of the larger structure of the device with a symbolic representation of connections to
the device. The region shown in Fig. 1a in the main text is denoted by the dotted square. All Ohmic contacts (crossed squares)
are located about 0.5 mm away. The charge sensor shown in Fig 1a is in the top left. Ohmics in the top right are grounded
to ensure a fixed potential in the electron reservoirs near the dot. Electrons in the enclosed reservoirs are heated by driving
an alternating square wave current through two QPCs at the bottom of the potentially non-equilibrium reservoir. Heat then
diffuses to the thermal reservoir through the middle QPC, resulting in a uniformly heated electron reservoir next to the QD.

play a role. In our experiment, ∆ICS is converted to ∆N assuming a linear relation between the two, but when ICS
is not linear in the additional electrostatic potential provided by, e.g., cross capacitance with VD, this assumption is
no longer valid.

To remove potential inaccuracy in the conversion between ∆ICS and ∆N due to non-linearity, ICS may be mapped
back to an equivalent charge sensor gate voltage, VCS , using a measurement ICS(VCS) (Fig. S2c). Performing the
entropy calculation using the equivalent gate voltage, instead of ICS , reduces any impact of charge sensor non-
linearity in the measurement of ∆N . In practice, however, no statistically significant difference was observed in
entropy calculations using the two approaches, so charge sensor mapping was not used.
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FIG. S2. a) A very wide sweep over a weakly coupled 0→ 1 transition using the plunger gate VP (the gate directly above the
QD in Fig. 1) showing the response of the charge sensor, and the usual alignment of the 0→ 1 transition at the steepest, most
linear part of the charge sensor response. The second step observed near VP = −270 mV is the 1 → 2 transition. A rough
estimate of the charging energy, EC , of the dot for the 1 → 2 transition may be made based on the spacing in gate voltage,
giving EC ∼ 1 meV. b) An equivalent sweep over a strongly coupled (Γ/kBT ∼ 10) 0→ 1 transition at VP = −670 mV (note:
this specific measurement was taken without VCS adjusted such that the transition occurs in the steepest, most linear part of
the CS response). c) Data of charge sensor current, ICS , vs the charge sensor QPC tuning gate (see Fig. 1a) used for mapping
ICS to a quantity in units of mV that is linear in electrostatic potential.
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DETERMINING ∆S BY DIRECT FITTING OF dN/dT DATA

For systems where the addition of an electron to the charge sensed quantum dot has a simple lineshape, as in the
case of a QD weakly coupled to a thermal reservoir, it is possible to extract the entropy change of the system by
fitting the ∆ICS data directly as was done in Ref. 9. This procedure is made possible through the application of the
Maxwell relation: (

∂µ

∂T

)
p,N

= −
(
∂S

∂N

)
p,T

For a QD weakly coupled to a thermal reservoir, the charging lineshape takes the form:

N(VD,Θ) = tanh

(
VD − Vmid(Θ)

2Θ

)
where Θ = kBT

αe and Vmid(Θ) is the plunger gate voltage at N = 1/2. Vmid changes the quantum dot energy level–that
is, the energy required to add an electron to the dot–and therefore maps to the chemical potential µ in equilibrium.

Differentiating N with respect to T , one finds a lineshape that depends explicitly on ∆S:

∂N(VD,Θ) ∝ −∂T
[
VD − Vmid(Θ)

2Θ
− ∆S

2kB

]
× cosh−2

(
VD − Vmid(Θ)

2Θ

)
after substituting

∂Vmid
∂Θ

=
1

kB

∂µ

∂T
=

1

kB
∆SN−1→N

.
Here ∂N(VD,Θ) is the difference in occupation of the QD for the reservoir temperature changing from T → T+∆T .

Fitting this equation to the ∆ICS data, ∆S is obtained as a fit parameter independent of the scaling of the data.

FITTING NRG TO DATA

NRG calculations were carried out using the flexible DM-NRG code[28, 29] on the standard single impurity Anderson
model. In the calculation, we assume infinite interaction U , a constant density of states in the reservoir with bandwidth
D = 1 exceeding all other energy scales, and we keep 350 states per iteration with discretization constant Λ = 2.
Results are given in arbitrary units of energy. Note that NRG curves are independent of the values of bandwidth,
W , and of U , as long as U,W � T,Γ because, as with the experimental plots, all curves are shifted such that x = 0
corresponds to half filling.

Our procedure for fitting the occupation, N , of NRG calculations to measured data involves three steps: 1. Linearly
interpolating over the 2D array of calculations. 2. Adding terms (amplitude, constant, linear) to account for the
behaviour of the charge sensor in detecting the QD occupations. 3. Allowing for an offset and scaling proportional to
Θ (T in units of gate voltage) in the ε0 axis. We then use Powell’s method of minimization [35] to find the best fitting
parameters allowing all to vary with the exception of Γ and Θ, for which only one is allowed to vary. In the weakly
coupled regime, it is reasonable to approximate Γ ∼ 0, and with that constraint, we are able to determine Θ(VD).
We find a linear relationship between Θ(VD) and VT which implies a linearly changing lever arm, α, as the system
temperature, T , is fixed (Fig. S3). Note that the lever arm, α, connects Θ in units of gate voltage to temperature,
T , in kelvin (Eq.S5),

αΘ = kBT (S5)

and is a measure of the strength of effect the plunger gate, VD, has on the QD. The linear change implies that as
VT is varied, the strength of effect of VD also varies. We attribute this to a change of shape of the QD where it moves
it further from VD for more positive VT . For measurements into the strongly coupled regime where Γ � 0, we force
the Θ parameter to follow the linear relationship found in the weakly coupled regime, allowing Γ to be a varying
parameter. The fit parameters found by comparing N of NRG data to ICS of measured data can then be used to
directly compare between the NRG dN/dT calculations and ∆ICS measurements.
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FIG. S3. Variation of lever arm α, and charge step Ie measured independently over the full range of VT explored in this
experiment. Dashed line: extrapolation of α into the strongly-coupled regime where it cannot be measured directly.

SCALING FROM ∆ICS TO dN/dT

The complete procedure for scaling from ∆ICS to dN/dT is comprised of two parts: Conversion of ∆ICS to ∆N ,
and calculation of the corresponding ∆T , expressed in equivalent mV on VD.

The procedure for scaling the ∆ICS measurements to dN/dT involves scaling ∆ICS → ∆N , then dividing by ∆T as
described in the main text. The ∆ICS → ∆N conversion is a straightforward division by Ie (Fig. S3), the net change
of current through the charge sensor for the addition of 1 full electron to the QD. In order to extract Ie from the
data, measurements of ICS are fit to NRG calculations of dot occupation across the transition, after adding a fixed
offset that account for the setting of the charge sensor in the middle of its first charge step, and a linear term that
accounts for cross capacitance between VD and the charge sensor. Examples of the fixed and linear terms are seen
clearly in Fig. S1a, where a very whide scan of VP (over a much larger range than required for the charge transition)
is able to completely pinch off the charge sensor, or to bring it to the first plateau. The cross capacitive effect of VD
is much smaller than that of VP : its lever arm to the QD energy level is much larger, so much only mV or sub-mV
changes are required in VD to sweep across a charge transition.

∆T is easily extracted in units of equivalent gate voltage (VD) for weakly coupled VT by fitting cold and hot
occupation data to NRG. For strongly coupled transitions, however, ∆T does not result in a broadening of the
transition lineshape, so it must be determined in another way. The real temperature change of the reservoir does not
depend on VT , of course, but the lever arm α does depend on VT . We calculate ∆T (VT ) in equivalent mV on VD by

1. fitting hot and cold transitions for a range of weakly coupled VT , to determine both ∆T (VT ) in equivalent VD
and α(VT ) through this range.

2. α(VT ) is observed to be linear in VT , and extrapolated to strongly-coupled VT (dashed line in Fig. 1c, main
text).

3. ∆T in equivalent VD is calculated for strongly coupled transitions using α(VT ) determined above.
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AVERAGING PROCEDURE

The data shown in the main text is the result of averaging measurements over many sweeps over the transition. In
the strongly coupled regime, as the ∆ICS signal becomes weaker, averaging data becomes particularly important. It
is often necessary to measure for 10’s of minutes or even hours in order to obtain a reasonable signal to noise ratio,
but the presence of charge instability makes single slow measurements over the transition unreliable. By repeatedly
sweeping over the transition quickly, then aligning each sweep based on a fit to the ICS data before averaging, we can
improve the signal to noise ratio of the corresponding ∆ICS whilst mitigating the effect of charge instability. This
procedure of post-aligning individual charge transition scans is followed for measurements in the range VT < −230
mV.

For more strongly coupled measurements (VT ≥ −230 mV), determining the center of each individual scan through
fitting is not reliable; as a result, data is averaged without centring first. Charge instability (determined in the weakly
coupled regime) is on the order of 6 µeV without significant long-term drift seen in the data. For the most strongly
coupled measurements, where the width of the transition is on the order of 400 µeV, the lack of centring therefore is
expected to have a negligible effect. Occasional larger jumps in transition position ( 0.5 mV) do occur on a timescale
of hours; care is taken never to average data across such jumps.
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FIG. S4. a) Markers illustrate a single measurement across the charge transition, which takes 30 seconds to complete. No
peak in ∆ICS can be seen in this raw data. After averaging 400 of such scans together (solid line), however, a small peak in
∆ICS is seen at ∆VD = 0. b) Raw ∆ICS data (greyscale) for 400 scans as in panel a). Averaged together, they yield the solid
line in panel a).
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LACK OF DEPENDENCE ON CHARGE SENSOR BIAS
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FIG. S5. The lineshape of ∆ICS , here plotted vs occupation instead of VD, shows no dependence on VCS within experimental
noise, though of course the magnitude of ICS and ∆ICS scales linearly with VCS . The case of Γ/kBT = 24 is shown here. In
particular, ∆ICS remains peaked at N ∼ 0.5, in contrast to the NRG calculation (solid line) in which the shifted peak reflects
the screening of spin entropy in the mixed valence regime due to the formation of the Kondo singlet.


