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4. Integral Calculus

4.1. Introduction to Integration.

As was the case with the chapter on differential calculus, for most of this chapter we
will concentrate on the mechanics of how to integrate functions. However we will
first give an indication as to what we are actually doing when we integrate functions.
This can be made rigorous mathematically but in this course we just want to get an
intuitive idea of what is going on.

Suppose we want to find the area lying between the graph of a function and the
x-axis between two given points a and b. Then one way of doing this would be to
approximate this area by the area of rectangles which lie under the graph, as shown
in Figure 1. The reason we use rectangles is because it is easy to calculate their
area, it is simply their height times their width.

Figure 1. An underestimation of the area under the graph of the
function f .

Of course the problem with this approach is that we will usually underestimate the
area under the curve since we are not including the area above the rectangles and
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under the graph. One possible solution would be to make the width of the rectangles
smaller and smaller. In this way we would hopefully get a better approximation to
the area under the curve. However we can not be sure that this would be the case
if we are dealing with a really strange function.

Another approach is to overestimate the area by putting the rectangles above the
curve as Shown in Figure 2.

Figure 2. An overestimation of the area under the graph of the
function f .

You might point out that this doesn’t get us any further and you would be correct.
Clearly it is no better to have an overestimation of the area. However the clever
bit is that we can try and reduce the overestimation by changing the widths of
the rectangles and we can try and reduce the underestimation the same way (using
different rectangles). If we can get both the overestimation and the underestimation
of the area to be ‘close’ to a given number A then we say that the function f is

integrable on the interval [a, b] and we write

∫

b

a

f(x) dx = A. In this case the area

under the curve is A. The number

∫

b

a

f(x) dx has a special name.

Definition 4.1.1 (Indefinite Integral). If a function f is integrable on the interval

[a, b], then the number

∫

b

a

f(x) dx is called the indefinite integral of f from a to b.

The function f is called the integrand.

In Figures 1 and 2, we have given an example of a function that lies above the x-axis
between the points a and b but the area is a ‘signed area’. That is if part of the
graph of f lies below the x-axis then this area is counted as negative. For example

in Figure 3, the integral

∫

b

a

f(x) dx represents the area in red minus the area in
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green. This means that if we are going to use integrals to calculate areas rather
than signed areas, we have to first find which parts of the graph lie above the x-axis
and which parts lie below. In the case of Figure 3, the actual area that lies between
the graph of f and the x-axis between the points a and b (i.e., the area of the red

portion plus the area of the green portion) is

∫

c

a

f(x) dx −
∫

b

c

f(x) dx. Note that

we have to put a minus sign before the integral

∫

b

c

f(x) dx to allow for the fact that
∫

b

c

f(x) dx gives minus the green area.

Figure 3. Signed area under the graph of the function f .

4.2. The Fundamental Theorem of Calculus.

It is all very well defining an integral as we did in Section 4.1 but in practice it
is almost impossible to use this definition to actually calculate areas. Luckily, the
Fundamental Theorem of Calculus comes to our rescue. There are several slightly
different forms of this theorem that you may meet in your studies but the one we
are going to use is the following.

Theorem 4.2.1 (The Fundamental Theorem of Calculus). Let F and f be functions
defined on an interval [a, b] such that f is continuous and such that the derivative
of F is f . Then

∫

b

a

f(x) dx = [F (x)]b
a
= F (b)− F (a).

Remark 4.2.2. Although this result is taught quite early on in your mathematical
career, it is a most remarkable and very deep result. It connects two seemingly
completely unrelated concepts. Firstly there is the derivative of a function, which
gives the slope of a tangent to a curve and then there is the integral of a function,
which calculates the area under the curve.
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The function F that appears in Theorem 4.2.1 has a special name.

Definition 4.2.3 (Antiderivative). Let F be any function such that the derivative
of F is equal to another function f . Then F is said to be an antiderivative of f .

Note that the antiderivative of a function is not unique. If F is any antiderivative
of f and if c is a constant, then it follows from the sum rule and the fact that the
derivative of a constant is zero, that F + c is also an antiderivative of f . However,
when using The Fundamental Theorem of Calculus, it doesn’t matter if we use F
or F + c since (F + c)(b)− (F + c)(a) = F (b) + c− (F (a) + c) = F (b)−F (a). That
is the constant will always cancel out.

The function F + c, where c is a arbitrary constant, also has a special name.

Definition 4.2.4 (Indefinite integral). Let F be any function such that the deriv-
ative of F is equal to another function f and let c be an arbitrary constant. Then
F + c is said to be an indefinite integral of f and the c is said to be a constant of

integration. This is written as

∫

f(x) dx = F (x) + c. That is, there is no a or b on

the integral sign.

Although we have a lot of progress theoretically, we have still not actually calculated
any integrals and that is what we will turn our attention to next.

4.3. Some Common Integrals.

As with differentiation, we start with some basic integrals and then use these to
integrate a wide range of functions using various rules and techniques. The basic
integrals that you will need in this course are collected together in Table 1. The
main thing is to learn how to use them rather than learning them off by heart, since
this table will be included in the exam paper. Note that in the table, c will stand
for an arbitrary constant.

f(x)

∫

f(x) dx Comments

k kx+ c Here k is any real number

xn
1

n + 1
xn+1 + c Here we must have n 6= −1

1

x
ln(x) + c Here we must have x > 0

eax
1

a
eax + c

sin(ax) −1

a
cos(ax) + c Note the change of sign

cos(ax)
1

a
sin(ax) + c

Table 1. Some common integrals
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Warning 4.3.1. (1) As was the case with derivatives, the integrals of sin(ax)
and cos(ax) are only valid if x is in radians. If x is in degrees then extra
constants are needed.

(2) Note that the minus sign occurs with the integral of sin(ax), rather than the
integral of cos(ax), where it appeared when we were differentiating.

As always, some examples will make things clearer. First of all we will give some
indefinite integrals in Table 2.

Remark 4.3.2. If you want to check your answer when you have found a definite
integral then all you need to do is to differentiate your answer. You should always
get back to the function you started with.

In Example 4.3.3 I have given a few examples of definite integrals but really finding
the indefinite integral is the hard part. Once you have this, finding the definite
integral is just a matter of substituting numbers into the formula. Please do re-
member however that the value of the antiderivative at the lower limit has to be
subtracted from the value of the antiderivative at the upper limit. Also note that
when calculating definite integrals, we ignore the constant of integration c since it
always cancels out.

Example 4.3.3. (1) Calculate the definite integral

∫ 2

1

x2 dx.

∫ 2

1

x2 dx =

[

1

3
x3

]2

1

=
1

3
23 − 1

3
13 =

7

3
.

(2) Calculate the definite integral

∫

π

0

sin(2x) dx.

∫

π

0

sin(2x) dx =

[

−1

2
cos(2x)

]π

0

= −1

2
cos(2π)−

(

−1

2
cos(0)

)

= −1

2
−
(

−1

2

)

= 0.

Note that in this case the integral is zero since the area above the x-axis
cancels out the area below the x-axis.

(3) Calculate the definite integral

∫

−1

−2

e−4x dx.

∫

−1

−2

e−4x dx =

[

−1

4
e−4x

]

−1

−2

= −1

4
e4 −

(

−1

4
e8
)

=
e8 − e4

4
.

As expected this integral is positive since ex > 0 for all values of x (i.e., the
graph of f(x) = ex lies above the x-axis).
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f(x)

∫

f(x) dx Comments

0 c
2 2x+ c
−4 −4x+ c
−π −πx+ c −π is just a number
e ex+ c e is just a number

cos(1) cos(1)x+ c cos(1) is just a number

x
1

2
x2 + c Since x = x1, n = 1

x3 1

4
x4 + c Here we take n = 3

x−4 −1

3
x−3 + c = − 1

3x3
+ c Here we take n = −4

xπ
1

π + 1
xπ+1 + c π is just a number

x−e
1

−e + 1
x−e+1 + c e is just a number

ex ex + c Here we take a = 1

e5x
1

5
e5x + c Here we take a = 5

e−7x −1

7
e−7x + c Here we take a = −7

eex
1

e
· eex + c = eex−1 + c Here we take a = e

sin(x) − cos(x) + c Here we take a = 1

sin(3x) −1

3
cos(3x) + c Here we take a = 3

sin(−2x)
1

2
cos(−2x) + c Here we take a = −2

sin(−πx)
1

π
cos(−πx) + c Here we take a = −π

cos(x) sin(x) + c Here we take a = 1

cos(4x)
1

4
sin(4x) + c Here we take a = 4

cos(−5x) −1

5
sin(−5x) + c Here we take a = −5

cos(πx)
1

π
sin(πx) + c Here we take a = π

Table 2. Some examples of indefinite integrals

4.4. The Sum and Multiple Rules.

As was the case with differentiation, although the integrals in Table 1 are very
useful, we would not get very far if these were the only functions we could integrate.
Luckily there are rules that allow us to integrate more complicated functions. The
first two of these are almost identical to the equivalent ones for differentiation.
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Theorem 4.4.1 (The Sum Rule for Integration). Let f : (a, b) → R and
g : (a, b) → R, then the definite integral of f + g on the interval [a, b] is given by

∫

b

a

(f + g)(x) dx =

∫

b

a

f(x) dx+

∫

b

a

g(x) dx,

provided the integrals of f and g exist.

All this says is that if we want to integrate a sum of two functions then all we have
to do is integrate them separately and add the integrals.

Remark 4.4.2. As you might expect there is an equivalent rule for indefinite inte-
grals:

∫

(f + g)(x) dx =

∫

f(x) dx+

∫

g(x) dx.

Note that when you have a sum like this you only need to include one constant of
integration. This is since if you add an arbitrary constant to an arbitrary constant
you just get an arbitrary constant.

Here are a couple of examples of the use of the Sum Rule.

Example 4.4.3. (1) Evaluate the definite integral

∫ 1

−1

x4 + e−x dx.

∫ 1

−1

x4 + e−x dx =

∫ 1

−1

x4 dx+

∫ 1

−1

e−x dx

=

[

1

5
x5

]1

−1

+
[

−e−x
]1

−1

=
1

5
15 − 1

5
(−1)5 + (−e−1)− (−e1)

=
2

5
+ e− e−1.

(2) Find the indefinite integral

∫

1

x
+ cos(−3x) dx.

Provided x > 0 (so that

∫

1

x
dx = ln(x) + c),

∫

1

x
+ cos(−3x) dx =

∫

1

x
dx+

∫

cos(−3x) dx

= ln(x)− 1

3
sin(−3x) + c.

As was the case with differentiation, the second rule that will enable us to integrate
a larger range of functions is the Multiple Rule.
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Theorem 4.4.4 (The Multiple Rule for Integration). Let f : (a, b) → R and let
k ∈ R (here I will use k instead of c to avoid confusion with the constant of integra-
tion c). Then the definite integral of kf over the interval [a, b] is given by

∫

b

a

(kf)(x) dx = k

∫

b

a

f(x) dx,

provided the integral of f exists.

All this says is that if we want to integrate a constant multiple of a function, then
all we have to do is first integrate the function and then multiply by the constant.

Remark 4.4.5. Of course, there is a corresponding Multiple Rule for indefinite
integrals:

∫

(kf)(x) dx = k

∫

f(x) dx.

Here are a couple of examples of how the Multiple Rule works.

Example 4.4.6. (1) Evaluate the definite integral

∫ 2

1

− 1

2x
dx.

∫ 2

1

− 1

2x
dx = −1

2

∫ 2

1

1

x
dx

= −1

2
[ln(x)]21

= −1

2
(ln(2)− ln(1))

= − ln(2)

2
.

Note that since the graph of f(x) = − 1

2x
lies below the x-axis on the interval

[1, 2], the integral

∫ 2

1

− 1

2x
dx must be negative.

(2) Find the indefinite integral

∫

3e4x dx.

∫

3e4x dx = 3

∫

e4x dx = 3
1

4
e4x + c =

3e4x

4
+ c.

Here we just write c rather than 3c since three times an arbitrary constant
is still just an arbitrary constant.

As you would expect, both the sum and multiple rules can be used at the same time.
Here are a couple of examples of this.
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Example 4.4.7. (1) Evaluate the definite integral

∫

π

−π

2 sin(3x)− 4ex dx.

∫

π

−π

2 sin(3x)− 4ex dx =

∫

π

−π

2 sin(3x) dx+

∫

π

−π

−4ex dx

= 2

∫

π

−π

sin(3x)− 4

∫

π

−π

ex dx

= 2

[

−1

3
cos(3x)

]π

−π

− 4 [ex]π
−π

= 2

[

−1

3
cos(3π)−

(

−1

3
cos(−3π)

)]

− 4
[

eπ − e−π
]

= 2

[

1

3
− 1

3

]

− 4
[

eπ − e−π
]

= 4
(

e−π − eπ
)

.

(2) Find the indefinite integral

∫

− 1

6x
+ 5x5 dx.

Provided x > 0 (so that

∫

1

x
dx = ln(x) + c),

∫

− 1

6x
+ 5x5 dx =

∫

− 1

6x
dx+

∫

5x5 dx

= −1

6

∫

1

x
dx+ 5

∫

x5 dx

= −1

6
ln(x) + 5

(

1

6
x6

)

+ c

=
5x6 − ln(x)

6
+ c.

Again note we only have the one arbitrary constant.

4.5. Integration by Substitution.

Unfortunately the sum and multiple rules are the only rules that carry over directly
from differentiation to integration. While there are rules for integration, they are
not quite as direct as the rules for differentiation and it can often be harder to
decide which rule to use. Because of this it is even more important to do lots of
practice problems for integration, since it is only through experience that you will
learn which rule is likely to be the best one to use. It is also the case that it is easy
to write down functions that can’t be integrated algebraically (although there are
numerical methods that can be used, we won’t be looking at these in this course).

For example the function f(x) = ex
2

can’t be integrated.

The first technique we will look at is integration by substitution. This can be written
down as a theorem but I feel that approaching it in this way can make it look more
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difficult than it actually is. It is far better in my opinion to learn this technique
through looking at some examples and this is what we will do now.

Example 4.5.1. Evaluate the definite integral

∫ 1

0

(x+ 3)10 dx.

One way of approaching this problem would be to expand (x + 3)10 and then in-
tegrate the resulting expression. However this would take a lot of work and there
would be lots of scope for errors. Instead we will use integration by substitution.
The key to the technique is to note that f(x) = (x + 3)10 can also be written as
f(x) = u10, if we let u = x+ 3.

The three things we have to do now are:

(i) Express the function f(x) = (x + 3)10 in terms of u. Note that in general in
this step, there will be some function of x ‘left over’. With luck this ‘left over’
bit will cancel with the expression we obtain in (ii).

(ii) Express dx in terms of du, u and x.
(iii) Change the limts of integration to be in terms of u rather than x.

If this method is going to work we will now have an integral with respect to u and
with no x’s appearing anywhere. If there are x’s still left then we will either have
to try a different substitution or we will have to try a different method altogether.

In this case we do each of these as follows:

(i) Since u = x+ 3, the function (x+ 3)10 becomes u10.

(ii) For this we use the formula dx =
dx

du
du =

du

du/dx
. In this case

du

dx
= 1, so

dx =
du

1
= du.

Note that dx and du are really not variables but in this particular situation,
you can treat them as if they were.

(iii) When x = 0, u = 0 + 3 = 3 and when x = 1, u = 1 + 3 = 4. Thus the lower
and upper limits of integration become 3 and 4 respectively.

Putting all this together we obtain
∫ 1

0

(x+ 3)10 dx =

∫ 4

3

u10 du Note there are no x’s here.

=

[

1

11
u11

]4

3

=
1

11
411 − 1

11
311

=
411 − 311

11
.
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Example 4.5.2. Find the indefinite integral

∫

6x2 + 4x+ 2

x3 + x2 + x+ 1
dx.

First note that when we are using integration by substitution to find an indefinite
integral, then clearly we only need to perform the first two steps above. However,
the main question is what substitution will we make? Looking at the integrand,
we see that the numerator is a multiple of the derivative of the denominator. In
cases like this, when one part of the integrand is a multiple of the derivative of
another part, then a good strategy is to let u equal the undifferentiated bit. So we
let u = x3 + x2 + x+ 1. Then the steps are:

(i) We have
6x2 + 4x+ 2

x3 + x2 + x+ 1
=

6x2 + 4x+ 2

u
. Note that in this case we still have

a function of x in the numerator.

(ii) Since
du

dx
= 3x2 + 2x+ 1, we have dx =

du

du/dx
=

du

3x2 + 2x+ 1
.

Putting this together we have
∫

6x2 + 4x+ 2

x3 + x2 + x+ 1
dx =

∫

6x2 + 4x+ 2

u
· du

3x2 + 2x+ 1

=

∫

2

u
du

= 2

∫

1

u
du

= 2 ln(u) + c

= 2 ln
(

x3 + x2 + x+ 1
)

+ c.

Remark 4.5.3. (1) The step where we have written
∫

6x2 + 4x+ 2

u
· du

3x2 + 2x+ 1
is a bit dubious notationally, since the integral

is with respect to u but there are also x’s in the expression. However I
recommend that you include this step, at least in this course.

(2) Once we have a definite integral then it is a good idea to differentiate it and
make sure we get the original function. I will leave it to you to differentiate
f(x) = 2 ln (x3 + x2 + x+ 1) + c and make sure you get

f ′(x) =
6x2 + 4x+ 2

x3 + x2 + x+ 1
.

Example 4.5.4. Evaluate the definite integral

∫

√

π

2

0

x cos
(

x2
)

dx.

Again in this example we see that x is a multiple of the derivative of x2, so let us
try the substitution u = x2. The three steps are:

(i) Since u = x2, the function x cos (x2) becomes x cos(u). We have an x left over
here. In this case we could write x =

√
u but this would not be a good idea

since we are hoping that the x will cancel with part of the expression we get
from (ii).
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(ii) Since
du

dx
= 2x, dx =

du

du/dx
=

du

2x
.

(iii) When x = 0, u = 02 = 0 and when x =

√
π

2
, u2 =

(√
π

2

)2

=
π

4
. Thus the

lower and upper limits of integration become 0 and
π

4
respectively.

Putting this together we obtain

∫

√

π

2

0

x cos
(

x2
)

dx =

∫

u=π

4

u=0

x cos(u) · du
2x

=
1

2

∫ π

4

0

cos(u) du

=
1

2
[sin(u)]

π

4

0

=
1

2

[

sin
(π

4

)

− sin(0)
]

=
1

2
·
√
2

2

=

√
2

4
.

Example 4.5.5. Find the indefinite integral

∫

2 cos(x)esin(x) dx.

Here we note that cos(x) is the derivative of sin(x), so we try the substitution
u = sin(x). The steps are as follows.

(i) We have 2 cos(x)esin(x) = 2 cos(x)eu. Note that again we have a function of
x left over’. It is possible to express 2 cos(x) as a function of u but agin this
would not be a good idea.

(ii) Since
du

dx
= cos(x), we have dx =

du

du/dx
=

du

cos(x)
.

Putting this together we obtain

∫

2 cos(x)esin(x) dx =

∫

2 cos(x)eu · du

cos(x)

=

∫

2eu du

= 2

∫

eu du

= 2eu + c

= 2esin(x) + c.
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Again you should check that on differentiating 2esin(x) + c you get 2 cos(x)esin(x).

4.6. Integration by Parts.

The next technique is used to transform integrals of the form

∫

f(x)g′(x) dx into

something easier to integrate. In this course f(x) will usually be a power of x (or a
polynomial in x) but we will also look at one other interesting case.

Provided all the integrals exist then the integration by parts formula for indefinite
integrals says that

∫

f(x)g′(x) dx = f(x)g(x)−
∫

f ′(x)g(x) dx

and the integration by parts formula for definite integrals says that
∫

b

a

f(x)g′(x) dx = [f(x)g(x)]b
a
−
∫

b

a

f ′(x)g(x) dx.

Note that in the original integral, we have f times the derivative of g, while in the
integral on the right we have g times the derivative of f .

Remark 4.6.1. (1) There is no constant of integration in the integration by
parts formula for definite integrals since we can just include it in the integral
∫

f ′(x)g(x) dx.

(2) In order to use the method of integration by parts we have to be able to
integrate the function that we call g′(x). Sometimes this will give us a clue
as to which function we will call f and which function we will call g.

(3) It is possible when using integration by parts to end up with a more difficult
integral than we started with. If this happens then it means we will have
to go back to the drawing board - either we will have to choose different
functions for f and g or maybe integration by parts is not a suitable method
for the particular function we are trying to integrate.

Now we will look at some examples to see how the method works in practice.

Example 4.6.2. Find the indefinite integral

∫

xex dx.

If we look at this integral we note that if we could get rid of the x then we could
integrate the ex, so this suggests that we let f(x) = x and g′(x) = ex.
(Note that if we let f(x) = ex and g′(x) = x, then although we could perform inte-
gration by parts, we would end up with a more complicated integral since we would

have g(x) =
1

2
x2 and f ′(x) = ex, so we would have

∫

f(x)g′(x) dx =

∫

1

2
x2ex dx).

With f(x) = x and g′(x) = ex, we obtain f ′(x) = 1 and g(x) = ex, so the integration
by parts formula yields

∫

xex dx = xex −
∫

ex dx.
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We can now easily finish the integration to get

∫

xex dx = xex − ex + c.

Let us now use integration by parts with a definite integral.

Example 4.6.3. Evaluate the definite integral

∫ π

2

0

2x sin(3x) dx.

Here we let f(x) = 2x and g′(x) = sin(3x), so that f ′(x) = 2 and g(x) = −1

3
cos(3x).

Thus, using the integration by parts formula, we obtain
∫ π

2

0

2x sin(3x) dx =

[

−2x

3
cos(3x)

]
π

2

0

−
∫ π

2

0

−2

3
cos(3x) dx

= −π

3
cos

(

3π

2

)

− (−0) +

∫ π

2

0

2

3
cos(3x) dx

=

∫ π

2

0

2

3
cos(3x) dx

=

[

2

9
sin(3x)

]
π

2

0

=
2

9
sin

(

3π

2

)

− 2

9
sin(0)

= −2

9
.

The next example is a little bit different since it appears at first sight that we can’t
use integration by parts since we don’t have a product of functions.

Example 4.6.4. Find the indefinite integral

∫

ln(x) dx.

The key here is to note that we can write ln(x) = 1 · ln(x) and let f(x) = ln(x) and

g′(x) = 1, so that f ′(x) =
1

x
and g(x) = x. Then, using the integration by parts

formula, we obtain
∫

ln(x) dx = x ln(x)−
∫

1

x
x dx = x ln(x)−

∫

1 dx = x ln(x)− x+ c.

Remark 4.6.5. Note that differentiating on the log term will also enable us to
integrate functions of the form y = xn ln(x).

We will finish this section by looking at an example where we have to use the
integration by parts formula twice.

Example 4.6.6. Evaluate the definite integral

∫

π

0

x2 cos(x) dx.

For the first application of the formula, we let f(x) = x2 and g′(x) = cos(x), so that
14



f ′(x) = 2x and g(x) = sin(x). Then, using the integration by parts formula, we
obtain

∫

π

0

x2 cos(x) dx =
[

x2 sin(x)
]π

0
−
∫

π

0

2x sin(x) dx = 0− 0 +

∫

π

0

−2x sin(x) dx.

For the second application of the formula, we let f(x) = −2x and g′(x) = sin(x), so
that f ′(x) = −2 and g(x) = − cos(x). Then, using the integration by parts formula
again, we obtain

∫

π

0

−2x sin(x) dx = [2x cos(x)]π0 −
∫

π

0

2 cos(x) dx

= −2π − 0− [2 sin(x)]π0

= −2π − (0− 0)

= −2π.

Thus

∫

π

0

x2 cos(x) dx = −2π.

4.7. Integration Using Partial Fractions.

The last technique of integration we will look at is integration using partial fractions.
Really this is not so much a technique of integration, it is more a technique used to
express algebraic expressions in a different form. It is used in situations where we are

dealing with functions of the form
f(x)

g(x)
, where f(x) and g(x) are both polynomials

with the degree of f being less than the degree of g and where g can be factorised.

Remark 4.7.1. This technique can be extended to the case where the degree of f
is greater than or equal to the degree of g but in this case we first have to divide
f by g using polynomial long division. We covered this in the first semester, but
I won’t give you any questions on integration requiring it since it would make the
questions too long.

Now let us look at some examples to see how this technique works in practice. The
easiest case is where g is a quadratic and can be factored into two different linear
factors

Example 4.7.2. Find the indefinite integral

∫ −4

x2 − 2x− 3
dx.

Here we note that x2 − 2x− 3 = (x+ 1)(x− 3), so we let

(1)
−4

x2 − 2x− 3
=

A

x+ 1
+

B

x− 3
,

where A and B are constants we have to find. Multiplying both sides of (1) by
x2 − 2x− 3 we obtain

(2) − 4 = A(x− 3) +B(x+ 1).

There are now two ways we can proceed. There is a quick way that will work in lots
of cases and there is a slightly longer method that will work in all cases.

15



We will first look at the quick method.
If we let x = 3 in (2), we obtain −4 = B(3 + 1), so B = −1.
Then if we let x = −1 in (2), we obtain −4 = A(−1− 3), so A = 1.

Thus we have
−4

x2 − 2x− 3
=

1

x+ 1
+

−1

x− 3
.

Before we go ahead and perform the integration, we will look at the other method
(which will work in all cases no matter how complicated). What we do is to rewrite
(2) as

(3) − 4 = (A+B)x+ (−3A +B).

That is we collect the terms in x together and the constant terms together. If we
now look at the coefficient of x on either side of (3) we see that 0 = A + B (the
term on the left is 0x) and if we look at the constant term on either side of (3), we
see that −4 = −3A + B. Thus we obtain the simultaneous equations 0 = A + B
and −4 = −3A +B. Solving these we get A = 1 and B = −1 as above.
We will now finish the job and perform the integration.

∫ −4

x2 − 2x− 3
dx =

∫

1

x+ 1
dx+

∫ −1

x− 3
dx = ln(x+ 1)− ln(x− 3) + c.

I performed the integrations ‘by inspection’, but if you can’t spot them, you can use
the substitutions u = x+ 1 and u = x− 3, respectively.

Next let us look at an example where p(x) has three linear factors. Note that I
won’t expect you to factor a cubic - in cases like this I will always give you at least
one of the factors. I will also keep all the examples in this section as indefinite
integration examples, so we can focus on the partial fractions and not have to worry
about substituting in the upper and lower limits. There is nothing difficult about
this however, once you have done the integration, it is not a problem.

Example 4.7.3. Find the indefinite integral

∫

3x2 + 12x+ 11

(x+ 1)(x+ 2)(x+ 3)
dx.

First note that the numerator is not a multiple of the derivative of the denominator,
so integration by substitution will not work and we have to use partial fractions. In
this case we let

(4)
3x2 + 12x+ 11

(x+ 1)(x+ 2)(x+ 3)
=

A

x+ 1
+

B

x+ 2
+

C

x+ 3
,

where A, B and C are constants we have to find. Multiplying both sides of (4) by
(x+ 1)(x+ 2)(x+ 3) we obtain

(5) 3x2 + 12x+ 11 = A(x+ 2)(x+ 3) +B(x+ 1)(x+ 3) + C(x+ 1)(x+ 2).

The quick method will work again in this case, so let us do it this way first.
If we let x = −1 in (5), we obtain 3− 12 + 11 = A(−1 + 2)(−1 + 3)), so A = 1.
Then if we let x = −2 in (5), we obtain 12−24+11 = B(−2+1)(−2+3), so B = 1.
Finally if we let x = −3 in (5), we obtain 27 − 36 + 11 = C(−3 + 1)(−3 + 2), so
C = 1.
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Thus we have
3x2 + 12x+ 11

(x+ 1)(x+ 2)(x+ 3)
=

1

x+ 1
+

1

x+ 2
+

1

x+ 3
.

The other method is as follows. If we expand the right hand side of (5) and collect
together terms in x2, x and the constant terms we obtain

(6) 3x2 + 12x+ 11 = (A +B + C)x2 + (5A+ 4B + 3C)x+ (6A+ 3B + 2C).

Then comparing terms in x2, x and the constant terms in (6), we obtain the simul-
taneous equations A + B + C = 3, 5A + 4B + 3C = 12 and 6A + 3B + 2C = 11.
These can be solved to obtain A = B = C = 1 as before.
After using either of these methods, we can perform the integration:

∫

3x2 + 12x+ 11

(x+ 1)(x+ 2)(x+ 3)
dx =

∫

1

x+ 1
dx+

∫

1

x+ 2
dx+

∫

1

x+ 3
dx

= ln(x+ 1) + ln(x+ 2) + ln(x+ 3) + c.

Next we will look at the case where g(x) has a repeated factor.

Example 4.7.4. Find the indefinite integral

∫

x− 2

(x− 1)2
dx.

Again note that the numerator is not a multiple of the derivative of the denominator,
so integration by substitution will not work and we have to use partial fractions.
When we have a repeated factor in the denominator, we let

(7)
x− 2

(x− 1)2
=

A

(x− 1)2
+

B

(x− 1)
.

Note that a similar method is used for higher powers, we just need three terms for
a third power and so on. Multiplying both sides of (4) by (x− 1)2 we obtain

(8) x− 2 = A +B(x− 1).

Unfortunately when we have a repeated root then the simple method of finding A
and B will not work completely. We can let x = 1 in (8) to obtain 1 − 2 = A, so
that A = 1 but then we still need to use the other method of comparing coefficients
to find B. We could use a hybrid method but perhaps it is more straightforward to
go straight for the comparing coefficients method. Rearranging (8) we obtain

x− 2 = Bx+ (A− B).

Then we obtain the simultaneous equations B = 1 and −2 = A − B. These have

solution A = −1 and B = 1, so
x− 2

(x− 1)2
=

−1

(x− 1)2
+

1

(x− 1)
. We can now perform

the integration.
∫

x− 2

(x− 1)2
dx =

∫ −1

(x− 1)2
dx+

∫

1

(x− 1)
dx

=
1

x− 1
+ ln(x− 1) + c.

I performed the last two integrations ‘by inspection’, but you can use the substitution
u = x− 1 if you can’t spot them.

17



For our final example, we will look at the case where g(x) has a quadratic factor
that can’t be factorised.

Example 4.7.5. Find the indefinite integral

∫

3x2 − 4x+ 2

(x2 − x+ 1)(x− 1)
dx.

In this case we let

(9)
3x2 − 4x+ 2

(x2 − x+ 1)(x− 1)
=

Ax+B

x2 − x+ 1
+

C

x− 1
.

Again the simple method for finding A, B and C will not work here, so we have
to use the method of comparing coefficients. Multiplying both sides of (9) by
(x2 − x+ 1)(x− 1) we obtain

3x2 − 4x+ 2 = (Ax+B)(x− 1) + C(x2 − x+ 1).

Multiplying this out and collecting terms we get

3x2 − 4x+ 2 = (A + C)x2 + (−A+B − C)x+ (−B + C).

This yields the simultaneous equations 3 = A + C, −4 = −A + B − C and
2 = −B + C. These can be solved to give A = 2, B = −1 and C = 1, so we

have
3x2 − 4x+ 2

(x2 − x+ 1)(x− 1)
=

2x− 1

x2 − x+ 1
+

1

x− 1
. We can now perform the integra-

tion to get
∫

3x2 − 4x+ 2

(x2 − x+ 1)(x− 1)
dx =

∫

2x− 1

x2 − x+ 1
dx+

∫

1

x− 1
dx

= ln(x2 − x+ 1) + ln(x− 1) + c.

Note you can use the substitution u = x2 − x+ 1 for the second last integral if you
can’t spot it.

4.8. Finding Areas and Volumes.

In the introduction to this chapter, we noted that integration is essentially a method
of calculating the area between the graph of a function and the x-axis. However we
also showed that if we want to calculate areas then we have to be a little careful
since integration finds ‘signed areas’. That is if the function lies below the x-axis
then the integral is negative. We will now look at a couple of examples where we
want to calculate actual areas rather than signed areas.

Example 4.8.1. Find the area lying between the graph of f(x) = x3 and the x-axis
between the points x = −1 and x = 1.
We first note that if x < 0 then x3 < 0 and if x > 0 then x3 > 0. So the graph
of f(x) lies below the x-axis for x ∈ [−1, 0) and above the x-axis for x ∈ (0, 1].
We have to take account of the fact that it lies below the x-axis for x ∈ [−1, 0) by
taking minus the integral for that range of x (since we are looking for the actual
area rather than the signed area).
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Hence the actual area is

−
∫ 0

−1

x3 dx+

∫ 1

0

x3 dx = −
[

x4

4

]0

−1

+

[

x4

4

]1

0

= −
(

0− (−1)4

4

)

+

(

14

4
− 0

)

=
1

4
+

1

4

=
1

2
.

Warning 4.8.2. If we calculating an actual area (rather than a signed area), then we
must get a positive answer. If we don’t then we must have gone wrong somewhere.

Here is another example.

Example 4.8.3. Find the area lying between the graph of f(x) = sin(2x) and the

x-axis between the points x = −π

2
and x = 0.

In this case the graph of f lies below the x-axis throughout the region of interest.
Hence we just take minus the integral. So the area is

−
∫ 0

−
π

2

sin(2x) dx = −
[

−1

2
cos(2x)

]0

−
π

2

= −
[

−1

2
cos(0)−

(

−1

2
cos(−π)

)]

= −
[

−1

2
−

(

1

2

)]

= 1.

Here is one final example.

Example 4.8.4. Find the area lying between the graph of f(x) = x3 + x2 − 9x− 9
and the x-axis between the points x = −2 and x = 2 given that the graph of this
function only crosses the x-axis at x = −1 in the interval [−2, 2].
Here we are given that the graph of f only cuts the x-axis once in the region of
interest. Thus it either lies above or below the x-axis between −2 and −1 and the
opposite between −1 and 2. To decide which, we just have to check another point.
In this case zero is easiest to check. Since f(0) = −9 < 0, it follows that f lies below
the x-axis in the interval (−1, 2] and above the x-axis in the interval [−2,−1). Thus
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the area is

∫

−1

−2

x3 + x2 − 9x− 9 dx −
∫ 2

−1

x3 + x2 − 9x− 9 dx

=

[

1

4
x4 +

1

3
x3 − 9

2
x2 − 9x

]

−1

−2

−
[

1

4
x4 +

1

3
x3 − 9

2
x2 − 9x

]2

−1

=

[(

1

4
(−1)4 +

1

3
(−1)3 − 9

2
(−1)2 − 9(−1)

)

−
(

1

4
(−2)4 +

1

3
(−2)3 − 9

2
(−2)2 − 9(−2)

)]

−
[(

1

4
(2)4 +

1

3
(2)3 − 9

2
(2)2 − 9(2)

)

−
(

1

4
(−1)4 +

1

3
(−1)3 − 9

2
(−1)2 − 9(−1)

)]

=

[

53

12
− 4

3

]

−
[

−88

3
− 53

12

]

=
221

6
.

We can also use definite integration to find volumes. What we will look at in this
section is finding the volumes created when graphs are rotated about the x-axis but
there are many other techniques available.

Figure 4. The volume of revolution of the function f(x) = x4 − x2

between x = 0 and x = 1.
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Figure 4 shows the graph of the the function f(x) = x4−x2 rotated about the x-axis
between the points x = 0 and x = 1. Luckily there is a simple formula that allows
us to find the volume of the body obtained when any function is rotated about the
x-axis.

Theorem 4.8.5 (Volume of Solid of Revolution). The volume V obtained when a
function f is rotated about the x-axis between the points x = a and x = b is given
by

V = π

∫

b

a

f(x)2 dx.

Remark 4.8.6. (1) Since the function is squared, we don’t have to worry about
whether the function is positive or negative, as we did when calculating areas.

(2) Since the area of a circle of radius f(x) is πf(x)2, this formula is really just
obtained by summing up the volumes of a series of disks perpendicular to the
x-axis, in a similar fashion to the way the area under a curve was obtained
by summing up the areas of a series of rectangles.

Let us now show how this works in practice by calculating the volume of the solid
shown in Figure 4

Example 4.8.7. Find the volume of revolution of the function f(x) = x4−x2 about
the x-axis between x = 0 and x = 1.
In this case we use Theorem 4.8.5 with a = 0, b = 1 and f(x) = x4 − x2. Hence the
volume is

V = π

∫ 1

0

(

x4 − x2
)2

dx

= π

∫ 1

0

x8 − 2x6 + x4 dx

= π

[

1

9
x9 − 2

7
x7 +

1

5
x5

]1

0

= π

[(

1

9
− 2

7
+

1

5

)

− (0− 0 + 0)

]

=
8π

315
.

Warning 4.8.8. As was the case when calculating actual areas, we must get a
positive answer when calculating volumes. If we don’t then we have gone wrong
somewhere.

Let us do one more example.

Example 4.8.9. Find the volume of revolution of the function f(x) = 2e2x about
the x-axis between x = 1 and x = 3.
In this case we use Theorem 4.8.5 with a = 1, b = 3 and f(x) = e2x. Hence the

21



volume is

V = π

∫ 3

1

(

2e2x
)2

dx = π

∫ 3

1

4e4x dx = π
[

e4x
]3

1
= π

(

e12 − e4
)

.
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